On the Conditions for One-sided Inverses to be Two-sided in Group Algebras

by Kyoung Hee Lee

Seoul National University, Seoul, Korea

1. Introduction. This paper contains some remarks about the Kaplansky's conjecture [1]: In a group algebra, are one-sided inverses two-sided? Hilbert space methods in the discrete group algebra have proved this to be true in characteristic 0; see [3]. But the characteristic p case remains open.

G. Losey showed this property (that one-sided inverses are two-sided) holds for group algebras of particular groups over arbitrary fields such that finite groups, abelian groups, nilpotent groups, and free groups [2].

Here we examine whether or not the conjecture is true in group algebras of supersolvable groups and solvable groups.

2. Preliminaries. A group G is supersolvable if it has a normal series with cyclic factors:
\[G = G_0 \supseteq G_1 \supseteq G_2 \supseteq G_3 \supseteq \ldots \supseteq G_\ast = \{1\}. \]

Theorem 1. [4] Let RG be a group ring of a supersolvable group G over a commutative ring with identity R. Suppose that R has no nontrivial idempotents and that if G has an element of prime order p then $p \notin UR$. Then RG has no nontrivial idempotents.

A group G is an F-group if RG is strongly finite for all strongly finite rings R (A ring R is strongly finite means that for any pair A, B of $n \times n$ matrices over R, $AB = I_n$ implies $BA = I_n$ for all positive integers n). We know that G is an F-group if and only if RG is 1-finite, i.e., each right invertible element is left invertible, since $(RG)_n = (R_n)G$.

Lemma 1. A group G is an F-group if and only if it is locally an F-group.

Theorem 2. [2] Let G be a group and H a subgroup of G of finite index. If H is an F-group, then G is an F-group.

3. Some Results. First we give a result for supersolvable groups:

Theorem 3. Let G be a supersolvable group and K be a field of arbitrary characteristic. Then each element which is right-invertible is left-invertible in the group algebra NG.

Proof. Let $ab = 1$ for $a, b \in KG$. We set $e = ba$. Then e is an idempotent, since $e^2 = (ba)(ba) = b(ab)a = ba = e$. Hence e is trivial by Theorem 1, i.e., $e = 0$ or 1. But if $e = 0$, then $1 = (ab)(ab) = a(ba)b = 0$, a contradiction. Therefore, $ba = 1$.

Remark. In fact, this theorem remains true for a group ring over a commutative ring R with
identity. ([2], Theorem 1)

Theorem 4. A solvable torsion group G is an \mathcal{F}-group.

Proof. There exists a normal sequence $G = G_0 \supseteq G_1 \supseteq \ldots \supseteq G_n = [1]$, where G_i/G_{i+1} is abelian for each i. Since g is a torsion group, G_i/G_{i+1} is an abelian torsion group, so it is locally finite for all i. Hence G is also locally finite. By Lemma 1 and Theorem 2, G is an \mathcal{F}-group.

Now we investigate our assertion for solvable groups. But in this direction, there are two short theorems:

Theorem 5. ([2]) Let G be a group, N a normal subgroup and assume (a) G/N is abelian, (b) N is finite. Then G is an \mathcal{F}-group.

Proof. It is sufficient to assume G/N finitely generated. Then $G/N \cong G_1/N \times \ldots \times G_s/N$, where each factor G_i/N is cyclic. If each G_i/N is finite cyclic, then G_i/N is an \mathcal{F}-group by Theorem 2, and hence so is G/N. For the case that G_i/N is infinite cyclic, let xN be a generator of N. Then $y \rightarrow x^{-1}yx$ is an automorphism of N. Since N is finite, N has a finite automorphism group, so x^m centralizes N for some $m > 0$. Thus $N^* = \langle x^m, N \rangle = \langle x^m \rangle \times N$ is an \mathcal{F}-group and $[G:N] = m$. By Theorem 2, G is an \mathcal{F}-group.

Theorem 6. ([2]) Let G be a group, N a normal subgroup and assume (a) G/N is abelian, (b) N is finitely generated abelian. Then G is an \mathcal{F}-group.

From this, we obtain the following corollaries:

Let $C(G)$ be the center of a group G.

Corollary 1. If $C(G)$ has a finite index in G, then G is an \mathcal{F}-group.

Proof. By Schur's lemma [4], the commutator subgroup G' is finite. And G/G' is abelian. So the result follows by Theorem 5.

A group in which each element has a finite number of conjugates is called an FC-group.

Corollary 2. A finitely generated FC-group is an \mathcal{F}-group.

Proof. Let g_1, g_2, \ldots, g_s be generators of G. Then $[G:C(G)] < \infty$ for all i and consequently $[G:C(G)] = [G : \langle g_i \rangle \cap C(G)] < \infty$. Thus G is an \mathcal{F}-group by Corollary 1.

References