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On the Bounded Multilinear Maps and Multilinear Product Spaces

by Ho Yeang Yoo

1. Introduction

The purpose of this paper is to investigate the properties of bounded multilinear maps and we
define a multilinear product and such that multilinear product spaces are normed linear spaces. A
vector topology of a topological vector space is determined by a neighborhood system of the origin 6
without inducing the concept of metric or norm. We define the bounded set and bounded map by

using the concept of neighborhoed.
2. Basic concepts

Definition 1.1. A topological vector space is a linear space E with a topology such that addition
and scalar multiplication are each continous simultaneously in both variables; more precisely such
that each of the following maps is continuous.

(a) the map of the product, ExXE with the product topology, into E, which is given by (z,y)—

x+y for z,y in E;
(b) the map of the product, KX E, of the scalar field K and E, which is given by (1, 2)—az
for 1 in K and z in E.

Proposition 1.2. In a topological vector space E there exists a fundamental system R of neighbor-
hood of 8 such that:

(1) for U in N there is a number VER such that V+VC U,

(2) for 2&C (Ax0) and for U, AU,

(3) for z=E and U=R there is a Cz >0 such that iz=U for 2C with |2|<Cz,

(4) for USSR there is a member VER with VU such that AVCV for 2&C with |2]<1.

(5) If E is a Hausdorff space, then N {U:UsR} = {0}.

Definition 1.3. A set A in a vector space E over C is balanced if 2ACA for every 1=C with
121<1.

Proposition 1.4. If (E,7) is a metrizable topological wvector space, then there is a fundamental
system of meighborhoods of 0 satisfying the following conditions:

(1) each U, is balanced

(2) UyDU,DUzDereeeeneenne

@ N,Ux=16)

Definition 1.5. A subset B of a metric space (X, d) is said to be bounded if there exist acX
and 2>0 such that d(a, ) <4 for all zeB.
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Definition 1.6. A subset B of a topological vector space E is said to be bounded if for any
neighhorhood U of 8 there exists >0 such that BCAU,

3. Bounded multilinear maps
Let E,, E,, .-+, E, and G be vector spaces over R.

Definition 2.1. The operator m:E, X E,X - X E,—G is said to be multilinear if for any z;, z/€E;
=12, -, n)
(1) m(xla Ty, e, xi+zi/g “* xn)zm(zls Ty, *vr, Tiy 02y xﬂ) +m(xl, Ty, o0, I,‘/, oty xn)

(2) m(xly Ty, ].2',', Y 'rll) =im (I], Loy *o0y Tiy °**y x’l)

Lemma 2.2. Let E\ E, - E, and G be topological spaces. A multilinear map(x,, z;, -+, T,) —
m(x,, Zy +, x,) for E\XE,X--+XE, into G is continuous on the product space E\XE,X -+ XE, if
and only if it is continuous at (0,0, .-+, 0),

Definition 2.3, Let E,, E,, ---, E, and G be topological vector spaces. A multilinear map m:E, x
E,% X E,~G is said to be bounded if for any bounded set A;x}Ayx XA, CEXE;x - XE,,
m(A; X Ay x+--x A,) is bounded.

Theorem 2.4, Let E,, E,, -, E, and G be topological vector spaces. A continuous mulitilinear map
m: E\XE, X E,—G is bounded.

Proof. Since m:E;x E;x -+ X E,—G is a continuous multilinear map, for any neighborhood W of
# in G, there is a neighborhood U; of 6 in E; for each i< ({1, 2, ---n} such that m(U;x Upx -+ x Uy)
CW. Let A, xAy;x+-- X A, be bounded. Then for the neighborhoods U,, U,, :+-, U,, there are 4;, 25, ---,
2n (>0, i=1, 2, +-+,n) such that A,CA4,U;, A,CA,U,, -+ - , A,.CiU,.

Hence m(A; X Ay X+ X A,) CTm (AU X Uy X o+ X 2, U) =222+ Ay m(Uy X Uy X oo X U,) CAdge-2, W.
Thus m is bounded at § and hence m is bounded.

Theorem 2.5. Let E,, E,, -, E, be metrizable topological vector spaces and G be a topological wvector
space. Then bounded multilinear map m:E, X E,X -+ X E,—G is continuous.

Proof. Let m:E, X E,x - X E,—»G be a bounded multilinear map. Suppose m is not continuous.
Then there is a balanced neighborhood W of 6 in G such that m~!(W) is not a neighborhood of
6,8,,68) in E;XE;x-XE, Since E,, E,, -, E, are metrizable topological vector spaces, by Prop.
1.2, there are fundamental systems {U,'; m=1,2, -} of neighborhoods of # in E;(i=1,2,,n)
such that

(a) each U,’ is balanced (m=1,2, ) in E,(i=1,2, -, n)

(b) UyDUyiDe(i=1,2,, 1)

© O Uni=(0} (=12,

Since %‘Uhlx—};U,zzx ><~ll—”U;,n(Zm-1(W). We take (), z.2, -, x:,”)E"%—‘U:.’X%Ul,ZX “'Xfi‘Ut,."N
m~(W). Then the sequence {l,z!, lz.? -, L,x,,") converges to (8,8, -, 8) and hence {L;z,}, lrx.?,
«,L,z;,") is bounded.

Since m is bounded, there is a 12>0 such that m(l,x, !, Lz, 2, -, L") =lly--L, m(z,}, 2 2 -0, 21,7
=AW,
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lll 7 WCW. But (=}, x.% -, . )Em (W)
g la

which is a contradiction. Thus m is a continuous multilinear map.

Let ll: lz, oy l,,ZR. Then m(xl.ly -rlzza Tty x,"n) = -

Corollary 2.6. Let E,, E,, -+, E, and G be normed linear spaces. A multilinear operator m:E,x

E;x - X E,—G is continuous if and only if it is bounded. From now on, 7 is even,

Definition 2.7. Let X be a real vector space. A multilinear product (m. p.) on X is a real function
{Zy, Loy +++, Ty 0N XX XX+ x X with the following properties.

(1) L@y, Ty, oo, Tit &, ooy Ty =LT1, o, *oy Ty o0y Ty LT, Ty o0, Ty o Zy ((=1,2, 05 1)

(2) @1, Za, +0, ATy o+, Ty = ATy, Ty, o0, Ty ((=1,2, 004, 1)

(3) Lz, z++, Y>>0 for zx0

(4) 14z, Tg, oy Tud | KTy, w0y 1) (Epy =0y Tg)*+ STy +++, Ty fOr all Ty, Ty, o+, Ty T’ in X and for all

real number 2. A vector space with a m.p. is called a multilinear product space (m.p. space).

Theorem 2.8, m.p. space is a normed linear space X withl|zl| =<z, z, -+, 2)*.

Proof. (1) Let us show that [+ || is subadditive, i.e., for all z,yeX, llz+3 Il <zl + Wyil.

[||z+y||l":<$+y,$+y, v, ZHY =L, T, )+ 4y, z, -, zZytee Lz, ey, x, z) et
# nl N P n! =2y

! : . . ! - ! -
et <® s DO DTy =Wzl Ty (2D + gy oy (2l

X lyli® +"'+(”fn1!)!1!(lllxlll Myl + Myli»=Cllzll+ltyl)" Thus {lz+y i<Wzl + Uyl

(2) Let us show that || - |l is positively homogeneous of degree 1, i.e., for all z=X, and all
AeR |l azil=2]lzll;

WAzl *={Az, Az, - Rz =2z, z, ---, Zp=2"|1 zlll*. Hence llAzll=12] lizll.

(3) Let’s show that z&X, |l z|| =0 implies z=6. Assume z+#6. Then {z, z--, £) >0 and hence

Mzl >0, ie., llzll=+0.

If X and Y are m.p. spaces, then XP Y= {(z,y):z=X, y= Y] is a m.p. space with componentwise
addition, scalar multiplication together with the m.p. defined by {(z1,3), (@2 32), s (T, ¥w) >=
{1, Zg, ***, Tuy + {31, ¥z, -, ¥u». The norm on XPY is given by Il (z, 3 ll=lzll*+ lyl"* If Ty
and T, are bounded linear operators on m.p. space X and Y respectively, then the bounded linear
opetator T\@PT, on XPY is defined by (T\PTY) (z, y)=(Tiz, Tyy).

Notation. W(T)={(Tz, Tz, -, Tz, z,z, -, 2> |l x|l=1}.

n n

2 2
Theorem 2.9. Let A and B be bounded linear operators on m.p. spaces X and Y respectively. If

W(A) and W(B) are convex subsets of C, then W(AMB)=Co(W(A) U W(B)) where Co(X) denotes
the convex hull of the set X.

Proof. Let 2& W(A@PB). We can find an element (z,%) in XPY such that !/ (z,») lI=(llzll*
+lylH*=1 and 2=<(A@B)z,y), -, (ADB)(z,%), (z,9), -, (z,9)>=(Az, -, Az, z, -+, ) +(By,

n n

2 2
-, By, y, -, 3>, Putting llzll"=a, we see that 0<a<1 and |lyll"=1—a. Notice that 2= W(B)

for a=0 and 1= W(A) for a=1. 1f 0<a< 1, then A=a(Az, ---, Az’, Az', 2, ., 2"+ (1—a) (BY, -,
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7ot s % p— Y ; ; ; ;
By’ y’, -, y") where z'= e and y'=— T e unit vectors in X and Y respectively. This

shows that 1e=Co (W(A)U W(B)). Conversely suppose A&Co(W(A) U W(B)) so that ==pu+ (1—B)v
with 0<8<1, p=W(A) and ve W(B). There exist unit vectors z in X and y in Y such that
p={Az, -+ Az, z, ---, ) and v=<{By, ---,By, y, ---,3>. Then 2=p{Ax, -, Az, z,*+-, 2>+ (1— F){By, --*, By,
By,y, -, 9)=(A¥p =z, - AVpz, Vg, -, YB)+<BYI—B % BV1-8y VIi—F5 -, VI-p»
=((AYBx, BYT=F), -, (A¥Vpx, BY1=55), (VBz, Y-, VBz, YVI—F»>={(ADB)
W/ﬂ-‘f, YI—B9), . (ADB)(¥Ez, V1—85, (Wpz, ¥V1-B3), . (VFx, ¥Y1—-F ). Since || (Vg z,
¥1—F =1, we conclude that 1= W(A®B).

Theorem 2.10. Let X and Y be m.p. spaces. Suppose S:X—X and T:T—Y are bounded linear
operators. Then

(a) SPT is bounded from below if and only if S and T are both bounded from below:

(b) R(T@’I‘)=X@Y if and only if R(S)=X and R(T)=Y, where R(U) denote the range of

the operator U,

Proof. (a) Suppose S@PT is bounded from below. Then there exists m>0 such that (| (SOT)
(z, MW Zmll (2,9 | for all (z,5) in XPY. This gives (x) W Szll+ Il Tyli*Zm (N z "+ Wy i ™
for all z in X and y in Y. Taking y=0 in (%), we see that |[|Sz|i>mlizfi for all z in X
showing that S is bounded from below. Similary T is bounded from below. Conversely suppose that
S and T are bounded from below. Then there exist positive constants m; and m, such that || Sz
>mlilziil for all z in X and || Tyl >m iy il for all ¥ in Y, If m=min (m,, m,) then it is easy
to verify that |} (S®T) (z, ) i >mll (z,3) i for all (z,5) in XPY.

(b) Follows from the fact that (z,, y,)—(z,») in X@Y if and only if x,~z in X and y,—y in Y,
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