On the Bounded Multilinear Maps and Multilinear Product Spaces

by Ho Yeang Yoo

1. Introduction

The purpose of this paper is to investigate the properties of bounded multilinear maps and we define a multilinear product and such that multilinear product spaces are normed linear spaces. A vector topology of a topological vector space is determined by a neighborhood system of the origin θ without inducing the concept of metric or norm. We define the bounded set and bounded map by using the concept of neighborhood.

2. Basic concepts

Definition 1.1. A topological vector space is a linear space E with a topology such that addition and scalar multiplication are each continuous simultaneously in both variables; more precisely such that each of the following maps is continuous.

- (a) the map of the product, $E \times E$ with the product topology, into E, which is given by $(x, y) \rightarrow x + y$ for x, y in E;
- (b) the map of the product, $K \times E$, of the scalar field K and E, which is given by $(\lambda, x) \rightarrow \lambda x$ for λ in K and x in E.

Proposition 1.2. In a topological vector space E there exists a fundamental system \Re of neighborhood of θ such that:

- (1) for U in \mathbb{N} there is a number $V \in \mathbb{N}$ such that $V + V \subset U$.
- (2) for $\lambda \in C$ ($\lambda \neq 0$) and for U, $\lambda U \in \mathfrak{N}$.
- (3) for $x \in E$ and $U \in \mathbb{R}$ there is a Cx > 0 such that $\lambda x \in U$ for $\lambda \in C$ with $|\lambda| \leq Cx$.
- (4) for $U \in \Re$ there is a member $V \in \Re$ with $V \subset U$ such that $\lambda V \subset V$ for $\lambda \in C$ with $|\lambda| \le 1$.
- (5) If E is a Hausdorff space, then $\cap \{U: U \in \mathfrak{N}\} = \{\theta\}$.

Definition 1.3. A set A in a vector space E over C is balanced if $\lambda A \subset A$ for every $\lambda \in C$ with $|\lambda| \le 1$.

Proposition 1.4. If (E, \mathcal{T}) is a metrizable topological vector space, then there is a fundamental system of neighborhoods of θ satisfying the following conditions:

- (1) each Un is balanced
- (2) $U_1 \supset U_2 \supset U_3 \supset \cdots$
- $(3) \bigcap_{n=1}^{\infty} U_n = \{\theta\}$

Definition 1.5. A subset B of a metric space (X, d) is said to be bounded if there exist $a \in X$ and $\lambda > 0$ such that $d(a, x) < \lambda$ for all $x \in B$.

Definition 1.6. A subset B of a topological vector space E is said to be bounded if for any neighborhood U of θ there exists $\lambda > 0$ such that $B \subset \lambda U$.

3. Bounded multilinear maps

Let E_1, E_2, \dots, E_n and G be vector spaces over R.

Definition 2.1. The operator $m: E_1 \times E_2 \times \cdots \times E_n \rightarrow G$ is said to be multilinear if for any $x_i, x_i' \in E_i$ $(i=1, 2, \dots, n)$

- (1) $m(x_1, x_2, \dots, x_i + x_i', \dots, x_n) = m(x_1, x_2, \dots, x_i, \dots, x_n) + m(x_1, x_2, \dots, x_i', \dots, x_n)$
- (2) $m(x_1, x_2, \dots, \lambda x_i, \dots, x_n) = \lambda m(x_1, x_2, \dots, x_i, \dots, x_n)$

Lemma 2.2. Let E_1, E_2, \dots, E_n and G be topological spaces. A multilinear map $(x_1, x_2, \dots, x_n) \rightarrow m(x_1, x_2, \dots, x_n)$ for $E_1 \times E_2 \times \dots \times E_n$ into G is continuous on the product space $E_1 \times E_2 \times \dots \times E_n$ if and only if it is continuous at $(\theta, \theta, \dots, \theta)$.

Definition 2.3. Let E_1, E_2, \dots, E_n and G be topological vector spaces. A multilinear map $m: E_1 \times E_2 \times \dots \times E_n \rightarrow G$ is said to be bounded if for any bounded set $A_1 \times A_2 \times \dots \times A_n \subset E_1 \times E_2 \times \dots \times E_n$, $m(A_1 \times A_2 \times \dots \times A_n)$ is bounded.

Theorem 2.4. Let E_1, E_2, \dots, E_n and G be topological vector spaces. A continuous mulitilinear map $m: E_1 \times E_2 \times \dots \times E_n \rightarrow G$ is bounded.

Proof. Since $m: E_1 \times E_2 \times \cdots \times E_n \rightarrow G$ is a continuous multilinear map, for any neighborhood W of θ in G, there is a neighborhood U_i of θ in E_i for each $i \in \{1, 2, \cdots n\}$ such that $m(U_1 \times U_2 \times \cdots \times U_n) \subset W$. Let $A_1 \times A_2 \times \cdots \times A_n$ be bounded. Then for the neighborhoods U_1, U_2, \cdots, U_n , there are $\lambda_1, \lambda_2, \cdots, \lambda_n$ ($\lambda_i > 0$, $i = 1, 2, \cdots, n$) such that $A_1 \subset \lambda_1 U_1, A_2 \subset \lambda_2 U_2, \cdots, A_n \subset \lambda_n U_n$.

Hence $m(A_1 \times A_2 \times \cdots \times A_n) \subset m(\lambda_1 U_1 \times \lambda_2 U_2 \times \cdots \times \lambda_n U_n) = \lambda_1 \lambda_2 \cdots \lambda_n \ m(U_1 \times U_2 \times \cdots \times U_n) \subset \lambda_1 \lambda_2 \cdots \lambda_n \ W$. Thus m is bounded at θ and hence m is bounded.

Theorem 2.5. Let E_1, E_2, \dots, E_n be metrizable topological vector spaces and G be a topological vector space. Then bounded multilinear map $m: E_1 \times E_2 \times \dots \times E_n \rightarrow G$ is continuous.

Proof. Let $m: E_1 \times E_2 \times \cdots \times E_n \to G$ be a bounded multilinear map. Suppose m is not continuous. Then there is a balanced neighborhood W of θ in G such that $m^{-1}(W)$ is not a neighborhood of $(\theta, \theta, \dots, \theta)$ in $E_1 \times E_2 \times \cdots \times E_n$. Since E_1, E_2, \dots, E_n are metrizable topological vector spaces, by Prop. 1.2, there are fundamental systems $\{U_m^i; m=1, 2, \dots\}$ of neighborhoods of θ in $E_i(i=1, 2, \dots, n)$ such that

- (a) each U_m^i is balanced $(m=1, 2, \dots)$ in $E_i(i=1, 2, \dots, n)$
- (b) $U_1^i \supset U_2^i \supset \cdots (i-1, 2, \cdots, n)$
- (c) $\bigcap_{m=1}^{\infty} U_m^i = \{0\} \ (i=1,2,\dots,n)$

Since $\frac{1}{l_1}U_{l_1}^1 \times \frac{1}{l_2}U_{l_2}^2 \times \cdots \times \frac{1}{l_n}U_{l_n}^n \not\subset m^{-1}(W)$. We take $(x_{l_1}^1, x_{l_2}^2, \cdots, x_{l_n}^n) \in \frac{1}{l_1}U_{l_1}^1 \times \frac{1}{l_2}U_{l_2}^2 \times \cdots \times \frac{1}{l_n}U_{l_n}^n \sim m^{-1}(W)$. Then the sequence $\{l_1x_{l_1}^1, l_2x_{l_2}^2, \cdots, l_nx_{l_n}^n\}$ converges to $(\theta, \theta, \cdots, \theta)$ and hence $\{l_1x_{l_1}^1, l_2x_{l_2}^2, \cdots, l_nx_{l_n}^n\}$ is bounded.

Since m is bounded, there is a $\lambda > 0$ such that $m(l_1x_{l_1}^{-1}, l_2x_{l_2}^{-2}, \dots, l_nx_{l_n}^{-n}) = l_1l_2\cdots l_n \ m(x_{l_1}^{-1}, x_{l_2}^{-2}, \dots, x_{l_n}^{-n}) = \lambda W$.

Let $l_1, l_2, \dots, l_n \ge \lambda$. Then $m(x_{l_1}^{-1}, x_{l_2}^{-2}, \dots, x_{l_n}^{-n}) \in \frac{\lambda}{l_1 l_2 \dots l_n} W \subset W$. But $(x_{l_1}^{-1}, x_{l_2}^{-2}, \dots, x_{l_n}^{-n}) \notin m^{-1}(W)$ which is a contradiction. Thus m is a continuous multilinear map.

Corollary 2.6. Let E_1, E_2, \dots, E_n and G be normed linear spaces. A multilinear operator $m: E_1 \times E_2 \times \dots \times E_n \rightarrow G$ is continuous if and only if it is bounded. From now on, n is even.

Definition 2.7. Let X be a real vector space. A multilinear product (m, p) on X is a real function $\langle x_1, x_2, \dots, x_n \rangle$ on $X \times X \times \dots \times X$ with the following properties.

- $(1) \langle x_1, x_2, \dots, x_i + x_i', \dots, x_n \rangle = \langle x_1, x_2, \dots, x_i, \dots, x_n \rangle + \langle x_1, x_2, \dots, x_i', \dots x_n \rangle \quad (i = 1, 2, \dots, n)$
- (2) $\langle x_1, x_2, \dots, \lambda x_i, \dots, x_n \rangle = \lambda \langle x_1, x_2, \dots, x_n \rangle$ $(i=1, 2, \dots, n)$
- (3) $\langle x, x \dots, x \rangle > 0$ for $x \neq \theta$
- (4) $|\langle x_1, x_2, \dots, x_n \rangle|^n \le \langle x_1, \dots, x_1 \rangle \langle x_2, \dots, x_2 \rangle \cdots \langle x_n, \dots, x_n \rangle$ for all $x_1, x_i, \dots, x_n, x_n'$ in X and for all real number λ . A vector space with a m.p. is called a multilinear product space (m.p. space).

Theorem 2.8. m.p. space is a normed linear space X with $|||x||| = \langle x, x, \dots, x \rangle^{\frac{1}{2}}$.

Proof. (1) Let us show that $\|\cdot\|$ is subadditive, i.e., for all $x, y \in X$, $\|x+y\| \le \|x\| + \|y\|$. $\|x+y\| ^n = \langle x+y, x+y, \cdots, x+y \rangle = \langle x, x, \cdots, x \rangle + \langle y, x, \cdots, x \rangle + \cdots + \langle x, \cdots, y \rangle + \langle y, y, x, \cdots, x \rangle + \cdots + \langle y, y, \cdots, y \rangle \le \|x\| ^n + \frac{n!}{1!(n-1)!} \langle x, x, \cdots, x \rangle ^{n-1} \langle y, \cdots, y \rangle + \frac{n!}{2!(n-2)!} \langle x, x, \cdots, x \rangle ^{n-2} \langle y, \cdots, y \rangle + \cdots + \frac{n!}{(n-1)!1!} \langle x, \cdots, x \rangle \langle y, \cdots, y \rangle ^{n-1} + \|y\| ^n = \|x\| ^n + \frac{n!}{1!(n-1)!} (\|x\| ^{n-1} \|y\|) + \frac{n!}{2!(n-2)!} (\|x\| ^{n-2} \times \|y\| ^2) + \cdots + \frac{n!}{(n-1)!1!} (\|x\| \|y\| ^{n-1}) + \|y\| ^n = (\|x\| + \|y\|)^n.$ Thus $\|x+y\| \le \|x\| + \|y\|$.

(2) Let us show that $\|\|\cdot\|\|$ is positively homogeneous of degree 1, i.e., for all $x \in X$, and all $\lambda \in \mathbb{R}$ $\|\|\lambda x\|\| = |\lambda| \|\|x\|\|$;

 $\|\|\lambda x\|\|^n = \langle \lambda x, \lambda x, \cdots \lambda x \rangle = \lambda^n \langle x, x, \cdots, x \rangle = \lambda^n \|\|x\|\|^n$. Hence $\|\|\lambda x\|\| = \|\lambda\| \|\|x\|\|$.

(3) Let's show that $x \in X$, |||x||| = 0 implies $x \in \theta$. Assume $x \neq \theta$. Then $\langle x, x \dots, x \rangle > 0$ and hence |||x||| > 0, i.e., $|||x||| \neq 0$.

If X and Y are m.p. spaces, then $X \oplus Y = \{(x, y) : x \in X, y \in Y\}$ is a m.p. space with componentwise addition, scalar multiplication together with the m.p. defined by $\langle (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \rangle = \langle x_1, x_2, \dots, x_n \rangle + \langle y_1, y_2, \dots, y_n \rangle$. The norm on $X \oplus Y$ is given by $\| (x, y) \| = (\| x \| \|^n + \| \| y \| \|^n)^{\frac{1}{n}}$. If T_1 and T_2 are bounded linear operators on m.p. space X and Y respectively, then the bounded linear operator $T_1 \oplus T_2$ on $X \oplus Y$ is defined by $(T_1 \oplus T_2)(x, y) = (T_1 x, T_2 y)$.

Notation. $W(T) = \{\langle Tx, Tx, \dots, Tx, x, x, \dots, x \rangle : |||x||| = 1\}$

$$\frac{n}{2}$$
 $\frac{n}{2}$

Theorem 2.9. Let A and B be bounded linear operators on m.p. spaces X and Y respectively. If W(A) and W(B) are convex subsets of C, then $W(A \oplus B) = Co(W(A) \cup W(B))$ where Co(X) denotes the convex hull of the set X.

Proof. Let $\lambda \in W(A \oplus B)$. We can find an element (x, y) in $X \oplus Y$ such that $|||(x, y)||| = (|||x|||^n + |||y|||^n)^{\frac{1}{n}} = 1$ and $\lambda = \langle (A \oplus B)(x, y), \dots, (A \oplus B)(x, y), (x, y), \dots, (x, y) \rangle = \langle Ax, \dots, Ax, x, \dots, x \rangle + \langle By, \dots, Ax, x, \dots, x \rangle$

$$\frac{n}{2}$$
 $\frac{n}{2}$

 \cdots , By, y, \cdots , y. Putting $|||x|||^n = \alpha$, we see that $0 \le \alpha \le 1$ and $|||y|||^n = 1 - \alpha$. Notice that $\lambda \in W(B)$ for $\alpha = 0$ and $\lambda \in W(A)$ for $\alpha = 1$. If $0 < \alpha < 1$, then $\lambda = \alpha < Ax$, \cdots , Ax', Ax', x', \cdots , $x' > + (1-\alpha) < By'$, \cdots ,

 $By', y', \cdots, y' \rangle \text{ where } x' = \frac{x}{\sqrt[n]{\alpha}} \text{ and } y' = \frac{y}{\sqrt[n]{1-\alpha}} \text{ are unit vectors in } X \text{ and } Y \text{ respectively. This shows that } \lambda \in Co(W(A) \cup W(B)). \text{ Conversely suppose } \lambda \in Co(W(A) \cup W(B)) \text{ so that } \lambda = \beta \mu + (1-\beta)\nu \text{ with } 0 \le \beta \le 1, \quad \mu \in W(A) \text{ and } \nu \in W(B). \text{ There exist unit vectors } x \text{ in } X \text{ and } y \text{ in } Y \text{ such that } \mu = \langle Ax, \cdots, Ax, x, \cdots, x \rangle \text{ and } \nu = \langle By, \cdots, By, y, \cdots, y \rangle. \text{ Then } \lambda = \beta \langle Ax, \cdots, Ax, x, \cdots, x \rangle + (1-\beta)\langle By, \cdots, By, By, y, \cdots, y \rangle = \langle A\sqrt[n]{\beta}x, \cdots, A\sqrt[n]{\beta}x, \sqrt[n]{\beta}x, \cdots, \sqrt[n]{\beta}x \rangle + \langle B\sqrt[n]{1-\beta}y, \cdots, B\sqrt[n]{1-\beta}y, \cdots, \sqrt[n]{1-\beta}y, \cdots, \sqrt[n]{1-\beta}y \rangle = \langle (A\sqrt[n]{\beta}x, B\sqrt[n]{1-\beta}y), \cdots, (A\sqrt[n]{\beta}x, B\sqrt[n]{1-\beta}y), \cdots, (A\sqrt[n]{\beta}x, \sqrt[n]{1-\beta}y), \cdots, (A\sqrt[n]{\beta}x, \sqrt[n]{\beta}x, \sqrt[n]{\beta}x, \sqrt[n]{\beta}x, \sqrt[n]{\beta}x, \sqrt[n]{\beta}x, \sqrt[n]$

Theorem 2.10. Let X and Y be m.p. spaces. Suppose $S: X \rightarrow X$ and $T: T \rightarrow Y$ are bounded linear operators. Then

- (a) S\(\oplus T\) is bounded from below if and only if S and T are both bounded from below:
- (b) $\overline{R(S \oplus T)} = X \oplus Y$ if and only if $\overline{R(S)} = X$ and $\overline{R(T)} = Y$, where R(U) denote the range of the operator U.

Proof. (a) Suppose $S \oplus T$ is bounded from below. Then there exists m > 0 such that $\|\| (S \oplus T) (x, y) \|\| \ge m \|\| (x, y) \|\|$ for all (x, y) in $X \oplus Y$. This gives $(*) \|\| Sx \|\|^n + \|\| Ty \|\|^n \ge m^n (\|\| x \|\|^n + \|\| y \|\|^n)$ for all x in X and y in Y. Taking y = 0 in (*), we see that $\|\| Sx \|\| \ge m \|\| x \|\|$ for all x in X showing that S is bounded from below. Similarly T is bounded from below. Conversely suppose that S and S are bounded from below. Then there exist positive constants S and S such that $\|\| Sx \|\| \ge m_1 \|\| x \|\|$ for all S in S and S in S and S are S and S are S and S and S and S are S and S and S and S are S and S and S are S and S and S are S and S are S and S and S are S and S and S are S and S and S are S are S and S are S are S and S are S and S are S are S and S a

(b) Follows from the fact that $(x_n, y_n) \rightarrow (x, y)$ in $X \oplus Y$ if and only if $x_n \rightarrow x$ in X and $y_n \rightarrow y$ in Y.

References

- 1. H.L. Royden, Real Analysis, The Macmillan Co., 1972.
- 2. J. Horviath, Topological Vector Spaces and Distribution, Addison-Wesley publishing Co., 1966.
- 3. W. Rudin, Functional Analysis, McGraw Hill, 1972.
- 4. W. Rudin, Real and Complex Analysis, McGraw-Hill, 1972.
- 5. F. Treves, Topological Vector Spaces, Distribution and Kernels, Academic Press, New York, 1967.