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A Consideration on the Relation of Proclusions and a-Spaces.
by Young Hee Kye

1. Preliminaries

In the study of topological spaces, the quotient map is considered as a typical universal map and
useful tool because of the universal factorization property.

In 1967, the concept of “Proclusion” has been proposed by N.E. Steenrod, (3). Thereafter, O.
Wyler defined proclusions by generalizing quotient maps in 1973, as definition 2.1 of this article.

The purpose of this study is to systemize the properties of proclusions. Furthermore, we introduce
a-spaces and investigate the relation between a-spaces and proclusions.

To simplify the discussion, we use the following notations.

Notations
i) TOP: the category of topological spaces and continuous maps.
ii) SET : the category of sets and functions.
ili) § : a nontrivial epireflective subcategory of TOP.
iv) A functor P: TOP—SET is a forgetful functor.
v) corh : the full and replete subcategory of J consists of a-spaces.

2. Properties of Proclusions
Here we introduce some definitions and theorems which will be useful in the sequal.

Definition 2.1. Let P: TOP—SET be a forgetful functor.

If X in an object of TOP such that f:X—Y and u# is an morphism of SET such that domain of
4 is PX then (f,v) is a P-proclusion pair at X over #, where v is a morphism of SET with the
following two properties:

(i) PF=vu in SET

(ii) Whenever domain of g is X and ¢ is a morphism of SET such that Pg—=tu in SET, then A

is uniquely cxists in TOP such that g=hf in TOP and t=(Phk)v in SET.

Definition 2.2. If (f,idPY) is a P-proclusion pair over Pf, then f:X—Y in TOP is a P-
proclusion.

Here, we can obtain another definition by categorical duality, that is P-inclusion pair and P-
inclusion. Precisely speaking, f:X—Y of TOP is a P-inclusion if for g:Z—Y in TOP and ¢ in
SET such that Pg— (Pf)t in SET, h:Z—X is uniquely exists in TOP such that g=fh in TOP and

Ph=t in SET.

Theorem 2.3. If f:X—Y in TOP is a P-proclusion and Pf is epimorphism in SET, then f is
epimorphism in SET, i.e., functor P always reflects epimorphism,
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Proof. If f:X—Y is a P-proclusion and Pf epimorphic in SET, then YPf:PX-—PY such that
vPrePX, there is Py=PY with Pf(Pz)=Py. So, Pf(Pz)=P[f(z)]=Py, i.e., vzcX, ayeY
with f(z)=y. Hence f is epimorphism in TOP.

In consequence, we obtain the following corollary.

Corollary 2.4. If f=TOP is P-inclusion and Pf=SET is monomorphism, then f is monomorphism,
i.e., P always reflects monomorphism.

Theorem 2.5. (2) Every isomorphism of TOP is a P-proclusion.

(b) Conversely, if (f,v) is a P-proclusion pair over an isomorphism u of SET, then f is an isomor-
phism of TOP and v an isomorphism of SET.

Proof. (a) Assume that (f,v) is a P-proclusion pair over « and f is an isomorphism of TOP.

Then 31f: Y—X such that f-f/=idY, f/-f=idY.

We shall show that (f, idPY) is a P-proclusion pair over Pf, ie. (i) Pf=(dPY)(Pf) (i})
vgeTOP, t=SET, such that Pg=t(Pf) in SET= alh=TOP such that g=hf in TOP and t=
(Ph)(idPY) in SET.

Since idPY=P(dY)=P(f-f")=(Pf)(Pf’), then (IdPY)(Pf)=((Pf)(Pf))(Pf)=Pf.

By the property of P-proclusion pair (f,v) over u, we let Pg=tu. Since (idPY)(Pf)=~Pf=vu,
idPY=v and Pf=u.

Hence Pg=tu=t(Pf) and t=(Ph)v=(Ph)(idPY).

(b) Assume that (f,v) is a P-proclusion pair over # and «:PX—S is an isomorphism is SET.

Then 3u’:S—PX such that u-u’=idS, u’-u=idPX.

Let u=V.(Pf) then v'u=u'(V(Pf))=('V) (va)=u'(Vv)u=(4'u)(Vv), i.e., Vv=idS,

Hence alv/(=V):PY—-S,

Since Pf=vu and v and « are isomorphism of SET, Pf is isomorphism and hence f is isomorphism
of TOP.

We may have following question.

“Does P-proclusion always exist in many topological situation?” Similarly, “Does P-inclusion always
exist in many topological situation?” The answer is easily obtained by the following. That is, in
order to f:X—Y and g=hf:X—Z are continuous, Y have to the finest topology for the given
topology of X. Similarly, f is a P-inclusion if and only if X has the coarsest topology for the given
topology of Y.

On the otherhand, by Theorem 2.3 and corollary 2.4, we may obtain general relation that the
proclusions correspond to quotient spaces and quotient algebras, the inclusions correspond to subspaces
and subalgebras.

Definition 2.6. A morphism e is called an extremal epimorphism if

(i) e is epimorphism

(ii) extremal condition: Whenever e=mf and m is monomorphism, then m is isomorphism.

Definition 2.7. A morphism e is called a strong epimorphism if

(i) e is epimorphism,

(ii) whenever mu=ve and m is monomorphism, there is a unique morphism ¢ such that v=m¢

and u—te.
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We notc that a strong cpimorphism is an extremal epimorphism bul the converse is not always
true.

Of course, extremal monomorphism and strong monomorphism are defined dually.

The following Theorem 2.8 whose proof is in (4] is useful to prove the main result of this paper.

Theorem 2.8. Assume that P has the following properties:

(a) P preserves and reflects monomorphisms.

(b) Every morphism g of TOP has a factorization g=g.\g, suck that g, is monomorphism in TOP
and Pg, is a strong epimorphism in SET.

(¢) For f:X—Y of TOP and strong epimorphism u of SET such that domain of u is PX, there
is a P-proclusion pair (f,v) at X over u.

Then the following statements are equivalent.

(i) f is an extremal epimorphism of TOP.

(i) f is a strong epimorphism of TOP.

(iii) f s a P-proclusion, and Pf is a strong epimorphism of SET.

Definition 2.9. A subcategory ¥ of TOP is called a full subcategory of TOP if for all X, Y of
TOP, hom (X, Y)=homrer(X, Y).

Definition 2.10. A subcategory § of TOP is called a replete subcategory (or, isomorphism closed
subcategory) if f:X—Y is an isomorphism of TOP and X is an object of 7, then f is a morphism
in § and Y is an object of 7.

Definition 2.11. A morphism 5y:X—RX of TOP is called a J-universal in TOP if RX is an
object of 7, and for isomorphism f:X—Y of TCP such that Y is an object of 7, there is a unique
morphism f:RX—Y in J such that f=f3¢ in TOP.

Definition 2.12. A subcategory J is reflective in TOP if for every object X of TOP, T -universal
morphism 7x:X—RX exists in TOP.
It is well known that J-couniversal morphisms and coreflective subcategories are dual to -universal

morphism and reflective subcategories.
3. a-Spaces

In this chapter, 7 is considered as a non-trivial cpireflective subcategory of TOP, i.e., J-universal

map pv:X—RX of TOP is cpimorphism and every object of 7 is not indiscrete space.

Definition 3.1. Let o be a class of spaces which contains at least one non-empty space.
For any space XesTOP, o/X={u|u: A—X continuous map, YAcd)}.

Definition 3.2. The object aX of 7 is determined by X, which is consist of underlying set | X|
of X such that every uczd/X is continuous and X has the finest topology in 7.

Definition 3.3. X is called an a-space if «X—X.

Theorem 3.4, For every space X. the map id|X|:aX—X is couniversal for the category corh o

of a-spaces.
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Proof. See 57,

In the condition of Theorem 3.4, since id|{X|:aX—X is couniversal, for f:X—Y, we have
fiaX—aY in 7. _

Now, we will denote f=af:aX—aY, then a becomes a functor from 5 to cork &,

In

@ s & aoselector for corh o and corh o is coreflective subcategory of 7,

€]
o

S¢r words., a is a right adjoint to the embedding functor from corh o to . Hence the functor

4. Main Results

Theorem 4.1. Assume that (f,v) is a P-proclusion pair over u such that X is an object of A*
cnd XY isin T and ey:RY>Y is d*-couniversal such that f=ey+f in T for f:X—>RY in d*
I7 “or any w of SET, (Pey)w=v and af =wu in SET, then ey is an isomorphism of I, (f,v)

is 2% a-proclusion pair over u and Y is a-space.

Proof. By assumption. since [f. 1 is a P-proclusion pair over u s1h: Y—>RY in 7 such that f=hf
in 7 ezi Phr=w in SET. So, uh f=f:X—=Y and P(eyh)v=v:S—PY, whenever u:PX—S.
Hencs svA=312Y, But ket RY—RY in s* Since :y’hey) = (eyh)ey=¢y, hey=idRY, thus ey is an
isomorphisc,

Since #* s g 2t RY-VY s in H*Y oeng XY is in A%

By hyro:zesis. X iz @-spece. Hezze St iz an e-prociusion pair over u and Y is a-space too.
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In particuler. & surisciive prociusicon i

Theorem 4.2. The strong epimorshicm in “and corh % are guotient map.
Proof. Let f be a strong epimorprism in 7 ‘2r. corha # .
By Theorem 2.8, f is P-proclusion and Pf is sirong edimorphism iff f is strong epimorphism.

Hence f is surjective proclusion, i.e., quotient map.
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