Some Properties of BCK-Algebras

by Sung-Min Hong and Byung-Gyu Kim Gyeongsang University, Jinju, Korea and Dae-A High School, Jinju, Korea

1. Introduction

The notion and some properties of BCK-algebra, which is an algebraic formulation of a propositional calculus, were introduced and studied by K. Iséki (see [1], [2], [3]).

In general, it is not held in the subset A of BCK-algebra M that $x*y \in A$ imply $y*x \in A$. In this paper, we studied any non-empty subset A of BCK-algebra M, which satisfies the following properties, property:

- (P_1) $0 \in A$, and $x \in A$ and $x * y \in A$ imply $y \in A$.
- (P_2) $0 \in A$, and $(y*x)*z \in A$ and $y*z \in A$ imply $x*z \in A$.

2. Preliminaries

By a BCK-algebra, we mean a general algebra M=(X;*,0) satisfying the following conditions:

- (1) (x*y)*(x*z) < z*y,
- (2) $x*(x*y) \leq y$,
- (3) $x \leq x$
- (4) $x \le y$, $y \le x$ imply x = y,
- (5) $0 \le x$, where $x \le y$ means x * y = 0.

We define $x \wedge y$ as (y*x)*y for $x, y \in M$. A BCK-algebra M is commutative if $x \wedge y = y \wedge x$.

Throughout this paper, M will mean a BCK-algebra, and A will denote a non-empty subset of M.

Theorem 1. In a BCK-algebra M, we have

- (1) $(x*y)*z \leq (z*x)*y$.
- (2) (x*y)*z=(x*z)*y.
- (3) $(x*y) \le z$ implies $(x*z) \le y$.
- $(4) (x*y) \leq x.$
- (5) x*0=x.

Proposition 2. Let A satisfy (P_1) . If $y \in A$ and $y \le x$, then $x \in A$.

Proposition 3. Let M_1 , M_2 be two BCK-algebras with $M_1 \cap M_2 = \{0\}$. We define x*y=y if x, y do not belong to same algebra. Then $M_1 \cup M_2$ is a BCK-algebra.

In a BCK-algebra M, the subset $A(a) = \{x \mid x \le a \text{ for a fixed } a \in M\}$ of M does not satisfy (P_1) in general.

Theorem 4. Any set A(a) satisfies (P_1) , if and only if, $x*y \le z$ and $x \le z$ imply $y \le z$ for $x, y, z \in M$.

Theorem 5. If A satisfies (P_2) , then (P_1) also.

Theorem 6. In Theorem 4, the subset $\{0\}$ of M satisfies (P_2) , if and only if, A(a) satisfies (P_1) .

3. Results

Proposition 7. In proposition 3, let A, B be non-empty subsets of M_1 , M_2 respectively. If A, B satisfy (P_1) , then the union $A \cup B$ also.

Proof. Let $y*x \in A \cup B$, $y \in A \cup B$. Then $y*x \in A$ or $y*x \in B$, and $y \in A$ or $y \in B$. If $y*x \in A$ and $y \in A$, or $y*x \in B$ and $y \in B$, then they are clear. Let $y*x \in A$ and $y \in B$. Suppose that $x \in M_2$. Then $y*x \in M_2$ and since $y*x \in A \subset M_1$, $y*x \in M_1 \cap M_2 = \{0\}$. Hence, we have $x \in B$ by Proposition 2. Suppose that $x \in M_1$. Then $y*x = x \in A$. Therefore, $x \in A \cup B$ in any case, and the proof is complete.

Proposition 8. In Proposition 3, let A, B be non-empty subsets of M_1 , M_2 respectively. If A, B satisfy (P_2) , then the union $A \cup B$ also.

Proof. Let $(x*y)*z \in A \cup B$, $x*z \in A \cup B$. If $x, y, z \in M_1$, then it is clear. If x, y do not belong to same algebra, then $(x*y)*z=y*z \in A \cup B$. If $x, y \in M_1$, $z \in M_2$, then $(x*y)*z=z \in M_2$, $x*z=z \in M_2$. Thus, $y*z \in B$. Therefore, $y*z \in A \cup B$ in any case, and the proof is complete.

Definition 9. Let A satisfy (P_1) . A is maximal if it is proper and it is not a proper subset of any proper subsets satisfying (P_1) .

Definition 10. In a commutative BCK-algebra M, let A satisfy (P_1) . A is called *prime* if $a \land b \in A$ implies $a \in A$ or $b \in A$.

Remark. By Theorem 5, Definitions 9 and 10 are held in the subset A of M, which satisfies (P_2) .

Lemma 11. Let A satisfy (P_2) . Then for $a \in M$, the subset $B = \{x \mid x*a \in A\}$ of M is the least set containing A and a, which satisfies (P_1) .

Proof. Let $x*y \in B$ and $x \in B$. Then $(x*y)*a \in A$ and $x*a \in A$ imply $y*a \in A$, and we have $y \in B$. On the other hand, $0=0*a \in A$. Hence, B satisfies (P_1) . Now, let the subset C of M be a set containing A and a, which satisfies (P_1) . Then for $x \in B$, since $x*a \in A \subset C$ and $a \in C$, $B \subset C$. Therefore, the subset B of M is the least set containing A and a, which satisfies (P_1) .

Theorem 12. Let A satisfy (P_2) . If A is maximal, then for any elements $x, y \in M$, $x*y \in A$ or $y*x \in A$.

Proof. Suppose that $x*y\notin A$. By Lemma 11, the subset $B=\{z\mid z*x\in A\}$ of M is a set properly containing A, which satisfies (P_1) . But, since A is maximal, B=M. Therefore, $(x*y)*x\in A$ and since $x*x=0\in A$, we have $y*x\in A$.

Theorem 13. Let M be a commutative BCK-algebra and A satisfy (P_1) . If A is maximal, then A is prime.

Proof. Let $x \land y \in A$. Then $x \land y = (y*x)*y = (x*y)*x \in A$ since M is commutative, and then $x*y \in A$ or $y*x \in A$ by Theorem 12. Thus, if $x*y \in A$, then $x \in A$, and if $y*x \in A$, then $y \in A$. Therefore, A is prime

References

- 1. K. Iseki, Some Properties of BCK-algebras, Math. Seminar Notes 2 (1974), Kobe Univ., 193-201.
- 2. K. Iseki, On Ideals in BCK-algebras, Math. Seminar Notes 3 (1975), Kobe Univ., 1-12.
- 3. K. Iseki, On Some Ideals in BCK-algebras, Math. Seminar Notes 3 (1975), Kobe Univ., 65-70.
- 4. K. Iseki and S. Tanaka, Ideal Theory of BCK-algebras, Math. Japonicae, 21 (1976), 351-366.