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On Normal Weights on Von Neumann Algebras*
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1. Introduction

Let M be & von Neumann algebra. A function ¢ on the positive convex cone M* of M with
values=0 finite or infinite is called a weight if ¢ satisfies the conditions:
1) ¢(z+y)=¢(z) +¢(»)
(2) ¢Qz)=12¢(x) z, yEM*, 120
where we use the convention: 0 - co=(,
Suppose ¢ is a weight on M*, Then
Fy= lwe M*| $(z) <oo]
is a face of M*, ie. a,b=F;, c=EMt, c<atb = c=F,, the set
Ry= (zeM|¢(z*x) < oo}
is a left ideal of M, and the set

9JE¢=‘JI¢*§72¢== {i}xi*lexi, .Z,‘E%vs, nEN'J!
i

is the linear span of ¥, Furthermore, M, is a hereditary subalgebra of M in the sense that any
element &M+ majorized by some element in My is in My*, We say that ¢ is semifinite if Wy is
o-weakly dense in M. The weight ¢ is faithful if ¢(z)=0 implies =0 for each z in M*, ¢ is
called normal if ¢(lubz;)=Ilubg(z;) for any uniformly bounded increasing net of positive elements.
The discovery of the modular operator and the modular automorphism group associated with a
normal faithful semifinite weight has led to a powerful theory—the modular theory—which is
nowadays essential to the consideration of many problems concerning operator algebra. The principal
result of the theory, obtained by Combes, Tomita and Takesaki, is stated as follows:
We will use the notation of Takesaki.
If ¢ is a normal faithful semifinite weight on the positive part of M, then d=N,*N, turnsout to
be an achieved left Hilbert algebra with left von Neumann algera £(«) isomorphic to M and
¢prQ*))=¢8 &led
Furthermore, there exists uniquely a one-parameter group of automorphisms {o,} of M for which
¢ satisfies the KMS-conditions in the sense that for every x,y in My, there exists a bounded function
F(2) holomorphic in and continuous on the strip, with boundary values
F(t)=¢(ai(x)y) and F(t+1)=¢(yo,(x)).
Conversely, every achieved left Hilbert algebra o gives rise to a normal faithful semifinite weight
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¢ on L(d)* by the equation
(1§17 if z=a()*n () é=d

$la)= -hoo otherwise.

which makes R*NM; an achieved left Hilbert algebra isomorphic to o. '

However, if ¢ is normal, then there are projections p and ¢ in M with p<gq such that ¢ is
semifinite on gMg and faithful on (1—p)M(1—p). Thus the restriction to faithful semifinite weight
is for most considerations only a matter of convenience.

In (3], U. Haagerup has raised the probrem:

Let ¢ be a weight on a von Neumann algebra M, and assume that the restriction of ¢ to any
commutative von Neumann subalgebra is normal. Is ¢ normal?

The purpose of the present paper is to provide conditions on M under which ¢ is normal.

2. Normality
The following lemma is due to U. Haagerup (3.

Lemma 1, For any weight ¢ on a von Neumann algebra M, the following conditions are all equivalent:

(1) ¢ is completely additive, i.e. (3 x.)=3¢(x;) for any set (z;} of positive elements for which ¢
is defined.

(2) ¢ is normal.

(3) ¢ is o-weakly lower semicontinuous.

4) ¢(=) 252‘: w(x), r=M?*, where F is a set of positive normal functionals.

(B) ¢(@)=X¢:(x) z=M", where {¢;] is a set of positive normal functionals.

Lemmea 2. ((5], Theorem 3.9) If 7 is a linear mapping from a von Neumann algebra M into
another such algebra N, the following conditions are equivalent:

(1) n is o—weakly continuous

(2) for each abelian *-subalgebra sl of M, 7|4 is o-weakly continuous.

Lemma 3. ((73) M* is o-weakly closed.

Proof. Let M* be the set of all hermitian elements of M and S the unit sphere of M. We first
show that M*NS is s-weakly closed. If M*NS is not closed, there exists a directed set {z,} in
M*NS which converges to an clement a4bi (%0) (e, b=M*), Suppose there exists a positive
number A>>0 in the spectrum of b (otherwise, consider {—z.}). Then

fet-inl| £ Q-+ 22+ v |b+al < lad-ib+inl)
for some large positive number zn. Since {z,+in1} converges to a-+ib+4-in) and belongs to (14-22)S,
the compactness of (1+22)72S implies a+ib+inle(1+n%)!172S. This contracts the above inequality.
Hence M*NS is o-weakly closed, so that by the Banach-Smulian theorem, M" is o-weakly closed.
Since M*NSCM*NS+1CM*, we have
MNS=(M*NSI N {M*NS+1}.
Hence M*N S is o-weakly closed, so that by the Banach-Smulian theorem, M* is o-wcakly closed.

Theorem 4. Let ¢ be o weight on a von Neumann algebra M such that whose restriction to any

commutative von Neumann subalgebra is normal. If ¢(1) is finite, then ¢ is normal.
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Proof. Let ze=M*, then xs5|zllj. Since ¢ is order preserving, ¢(z) < |lzfl¢(1). So ¢ can be
extended to a linear functional ¢ on M since the positive part M+ of M generates M. Consider a
uniformly bounded increasing directed set |z.) of positive elements in an abelian von Neumann
subalgera N of M. Then

¢ (supza) =g n(supza) =sup ($| (2e) =sup(P(22))
where the second equality holds because of the normality of ¢|y.

Hence the restriction of ¢ to each abelian von Neumann subalgebra of M is normal. Let z,—z
o-weakly in M*, Then by lemma 3, zeM* and ¢(z,)=¢(z.,)—>d(z)=¢(z). Hence by lemma I,

¢ is normal.

Lemma 5. ((1)) Any abelian won Neumann aigera on a separable Hilbert space is gemerated by a

single hermitian element.

Lemma 6. Let M be a factor of type I,, then we may assume that any mazimal abelian von
Neumann subalgebra N of M is of the form

RS

Proof. Since M is a factor of type I,, M is isomorphic to £(#) where dim H=n, whence to
M,(C), the nxn matrix algebra over C. Since C" is separable, N is singly generated by a hermi-

a,e=C, i=l, 2"] .

tian operator T by lemma 5. By the spectral theorem, there exists an orthonormal basis of #
consisting of eigenvectors of 7. With respect to this basis, T is represented by a diagonal matrix.

Since N is maximal abelian, N must be

[ ()

Lemma 7. If N is an abelian von Neumann algebra contained in £.(K), then there exists a maximal

a;=C, i=], 2---71] .

abelian von Neumann algebra in L(#¥) containing N.
Proof. We give a partial order to the family P of all abelian von Neumann subalgebras containing
N in £(#) by set inclusion. Since the weak closure of the union of any chain is an abelian von

Neumann algebra in £(#), there is a maximal element by Zorn’s lemma.

Theorem 8. If M is a factor of type I, and if ¢ is a weight on M* such that the restriction of
¢ to each abelian von Neumann subalgebra is normal, then ¢ itself is normal.
Proof. Since M is a factor of type I,, M is isomorphic to £(#) for some Hilbert space #. Let
a=R be any positive number. Note that
[zeM*|¢(z) sal=Un{zEN* ||y (z) Sa}
where N runs over all abelian von Neumann subalgebras of M. By lemmm 6,7,
Ur{zeN*|¢|n(z) Sa) =ze=N"t ||y (z) £a}, where

a, 0
N/ = { < ay.., )
0 “ay,

Since ¢|5- is normal, it is g-weakly lower semicontinuous by lemma 1. Hence {r=Mt|¢(z)=a} is

a,sC, i=1,2,-n

a-weakly closed for any positive number a. Hence ¢ is a normal weight.
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The following lemma is essentially the same as (6].

Lemma 9, Let M be a von Neumann algera with a separating vector & Then
(a) Let the von Neumann algebra N satisfy

NCM, NCN/, ¢))
then the orthogonal projection P on the closure of N§ is such that
Pe=¢§, pM'pC (pM'p)’. (2)

(b) Let P be an orthogonal projection in K satisfying (2), then the von Neumann algebra N=
(MU P)’satisfies (1).

(¢) The relation between N and P established by (a) and (b) are the inverse of each other.

Proof. Let the von Neumann algebra N satisfy (1) and let P be the orthogonal projection on
the closure of N&. We note the following facts.

(i) P=N’,

(Let x,y=N, we have zpyé—=zyé—pryt=prpyt and, since N¢ is dense in P(H), zp=pxp. By
taking adjoint, zp=pz.)

(ii) Multiplication by P yiclds an isomorphism

M'yUPy->P(M'UP),
(Let zes(M’JP)’, then
zp—0 = 28—0 ==> Mt~ == x=(
since £ is cyclic for M’.]

(iii) P(M'UP)' =P(PM'P)’.

(P(IM'UPY'=(M'UP)'={PzP|pwm |zeMUP} — (PzP|pm|zeM'})'=P(PM'P)’.]

(iv) PN=P(PN)'=P(PM'P)"'=P(PM'P)’,

{The restriction of PN to P(#) is abelian and has the cyclic vector & thus it is maximal abelian,
hence PN=P(PN)’. The set PM'P restricted to P(#) commutes with PN and has the cyclic vector
&, therefore

P(PN)'DP(PM'P) or P(PM'P)'DPN
and since it is maximal, P(PM’P)"—P(PM'P)’.’)
(v) N=(M'UP).
[(1) yields NC(M’UP)’. Thus by (ii) and (iv), we have
PM'JP)CPN=P(M \JP) —P(PM'P)’,
This gives
PN=P(M'UP)’".
By (iD),
N=(M'UP)".
Part (a) of the theorem and one half of part (c¢) follows from (iv) and (v) respectively.]

Let now P be an orthogonal projection in # satisfying (2), We note the following facts.

(vi) P(PM'P)/'=P(PM'P)’,

(The restriction of (PM’P)’’ to P(#) is abelian and has the cyclic vector £, Hence it is maximal
abelian.)

(vii) P(PM'P)'=P(M'UP)’.
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[The proof is the same as for (iii).)
(viii) Multiplication by P yields an isomorphism
(M'UP)'-P(M'UP)".

[The proof is the same as for (ii).)

(ix) The closure of (M’UP)’¢ is the range of P.

(Because (M'JP)'¢=P(M'UP)'&=P(PM'P)""2PM’¢ by (vi), (vii).]

It follows from (vi), (vii) that (M'UP)’ is abelian, proving part (b) of the theorem. The second
half of (¢) follows from (iv). Now we prove the main theorem.

Theorem 10. Let M be a von Neumann algebra on K with a separating vector & and the number

of orthogonal projections in L(K) satisfying
Pt=¢, PM'PC(PM'P)’

be finite, then a weight ¢ is normal if the restriction ¢\ of ¢ to each abelian von Neumann subalgebra
NCM is normal.

Proof. Let a be any positive number. Then

(zeM*|$(z) Sa} = Uy [ce N* ¢ s (2) Sal

where N runs over all abelian von Neumann subalgebras of M,

By lemma 9, the right side of the equality is a finite union. The o-wecak closedness of cach
[reN*|¢|x(x) a} completes the proof.

Remark. Theorem § is a special case of Theorem ]0.
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