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1. Introduction

In the study of topological structure, the monosource is the most essential for the basic construc-
tion. It is well known that the category theory gives the convenient language and tool for the study
of almost all mathematical structure.

In this paper, we try to use those concepts for the study of some specific spaces. We consider
a full subcategory A of Top, define mon(A) and we study their internal characterizations and
categorical properties for various categories A. For the terminologies, refer to (Herrich & Strecker,

Category Theory).
2. Definitions and Theorems

Proposition 1. Top is (quotient, monosource) category.

Proof. Let (f;: X—X))ic; be a source of continuous maps, let R:__let(f;), and Y=X/R be
the quotient space. Let ¢ : X— Y be the quotient map. Then since ker(g) Cker(f;), there is a map
m; . Y—X; such that f=m;oq for each i€l Since ¢ is final, each m, is continuous and hence

(m; . Y—>X});er is a monosource.

i q m;
Thus, X—X;=X——Y——X, (ie]) is a (quotient,monosource) factorization. For a quotient

morphism ¢, and a monosource (m;);es, let

X € > Z
f gi
Y > Y
m;

be a commutative diagram.

Let's show that ker (¢) Cker (f).

Let (z,z')sker (e), that is, e(x)=e(z’). Then g,(e(z))=g;(e(z'))for all i€, Since m;of(z)=
mof(z’) for all il and (m;);; is a monosource, f(z)=F(z’), that is, ker(e) Cker(f). Consequ-
ently, there exists a unique map k:Z-Y with f=hoe. Since mjohoe=m;of=g;oe and ¢ is epi,
mioh—=g..

Finally, since m;oh—g;, g is continuous, and (m;);.; is initial, it follows that % is continuous.

Theorem 1. Let A be a full, isomorphism-closed subcategory of Top. Then A is quotient reflective,
that is, each reflection is given by a quotient map if and only if A is closed under the formation of
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monosources.

Proof. Let (f;: X—X,);e; be a monosource with X;&=A for all i=I and ¢ be the A-reflection of
X. Then there exists a unique continuous map. k; : A—X; with k;ee=f; for each il Since Top is
(quotient, monosource)-category,there is a unique continuous map % such’ that koe=1x and fick=k;
for all il Hence eckoe=eoly=14ce. Since e is a reflection of X, eck=1,. This implies that e is
a homomorphism and hence Xe=A.

Conversely, for any XeTop, let (f;: X—X)er be the source of all continuous maps with Xi=4

fi e m; .
and let X——X;=X—— A——X; be the (quotient, monosource)-factorization of (f)s, that is, for

each i€l fi=m;ce and e is quotient and (m,);c; is a monosource. Since A is closed under the form-
ation of monosource, A=A,
Let’s show that ¢ : X—A is in fact the A-reflection of X, For any Y= A and a continuous map

f i
Fi1 XY, there is an i=I such that X—— Y¥=X——Y. By the above factorization of (f;), there

is a continuous map m; : A—Y with f—=fi==m;ce. Since ¢ is epimorphism, such a continuous map

m; is unique.

Theorem 2. Let A be a full, isomorphism-closed subcategory of Top. Then A is quotient reflective
if and only if A is productive, hereditary, and for (X,7)EA and tCt', (X,t)EA.

Proof. Since A is quotient reflective, A is closed under the formation of monosources. Since for
A,eAGs]) and a subspace X of A=A, (p,,: [TA—A)ie; and e X—A are monosource, gX;EA
and XA and since iy : (X, 1)~ (X, 1) is monomorphism, (X, ) 4.

Conversely, let (f; : X—X)ic; be a monosource with X;=A and X=(X, 7). We may assume that
I'is a set. Let ¢/ be initial topology on X with respect to (f;)ic;. Then t/Cr, Since (‘_gf,») (X) is

a subspace of IIIX;, (H]f") (X)e A, and since (X, 7’) is homemorphic with (_Hlf,-) (X), X, vHeA.

On the other hand,since Ix : (X,17)— (X, t’') is monomorphism, (X, 7)=A and hence, A is quotient

reflective.

Notation 1. Let A be full subcategory of Top and let mon(4) be {Xe=Top| there is a mono-
source {fi: X—Aj}ier in Top such that for all isl, A;A).

Note that in Top, {f;: X—A;}ic: is a monosource if and only if {f;: X—>A;}:c; seperates points
of X, that is, if z#y in X, then there is f;e=I with fi,(2) #f,(¥), equivalently, if fi(2)=s:(y)
for all i=I, then z=y,

Theorem 3. Let A be a full, isomorphism-closed subcategory of Top. Then mon(A) is the smallest
quotient reflective subcategory of Top containing A.

Proof. Since the composition of monosource is again a monosource, mon(A) is closed under form-
ation of monosources and hence mon(A) is quotient reflective in Top,
It is obvious that ACmon(A). Let B be a quotient reflective subcategory of 7Top containing A.
Since B is closed under the formation of monosources and ACB, mon(A)CB. That is, mon(4) is

the smallest quotient reflective subcategory of Top containing A.

Corollary 1. Let A be a subcategory of Top. Then mon(A) is the extremal epireflective hull of A
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in Top.

Corollary 2. 1) mon(A) is closed under the formation of initial monosources.
2) mon() is productive and hereditary.
3) For any (X,t)=mon(4) and v'2r, (X,1') also belongs to mon(A).

Theorem 4. For any ACTop and X=Top, the followings are equivalent.
1) Xemon(A).
2) There is a family (A.)ie; in .\ and there is a map f: X—ITA; which is 1-1 continuous.
3) There isa 1-1 continuous map f: X—Y such that YeEpi R(A), where Epi R(A) is the epireflec-
tive hull of A in Top,

Proof. 1)—)>2) Since X=mon(A), there is a monosource (f;: X—A4A;);e; such that for all ie],
A;=A. By the definition of product ITA;, there is a 1-1 continuous map f such that p,,of=f; for
all i1
2)—>3) Let Y—=IITA;., Then YEEpi R(A) and hence f:X—-Y is a 1-1 continuous map.
3)=—>1) Since Epi R(A)CTmon(A), 1-1 continuous map f : X— Y is a monosource, hence X&mon(A),

Notation 2. 1) Let CHaus be the category of completely Hausdorff spaces and continuous maps.
2) Let Comp Sep be the category of completely seperated spaces and continuous maps.
3) Let O, be the category of normal spaces and continuous maps.

Corollary 3. 1) XeCHaus if and only if there is a 1-1 continuous map f: X— Y=CReg.
2) Xe=Comp Sep if and only if there is a 1-] continuous map f: X—Y with Y& Zdim.
Proof. Since mon({1})=CHaus, 1) is obvious. Since mon( {0, 1})=Comp Sep, 2) is obvious.

Remark. mon(0,)20,. Suppose mon(0,)=0,. Since mon(0,) is productive, O, is productive,

which is a contradiction.

Example 1. Let X& A, where X contains an indiscrete subspace A with |A)>2. Then mon(A) =
Top.

Proof. Let z,,y,=A with z#y. Let Y&Top and for any distinct pair 4,67, let f.,: Y-X
be a continuous map defined by f..(a)=z, and fo;(z)=y, for z#a. Then (fo,:Y—>X) isa
monosource. Hence Yemon(4).

Example 2. mon(Haus)=Haus.

Proof. Pick XeHaus, then Iy : X—X is a monosource. Hence X belongs to mon(Haus), so that
HausCmon (Haus), Take any monosource (f;: X—X);o; with X;e=Haus (icI). Let z+#y in X,
Then there is iy=1 such that f,(2) #f;,(») in X,,. Since X; is Hausdorff, there is a disjoint nbds
U, V,, of fi(x), fi(y). Then f1(U,) and f-1(V;) are disjoint nbds of x and y respectively, so
that X is a Hausdorff space.

Example 3. mon({R})=mon({l})=CHaus, where R is the real line with the usual topology, I is
the unit interval [0,1]) with the usual topology, and CHaus is the category of completely Hausdor ff
spaces.

Proof. Let |f;: X—R};-; be a monosource. Since R is completely regular, X belongs to mon({I}).
Conversely, let {g; : X—I};.; be a monosource in Top. Then for z+#y in X, there is i, such that
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&i(z) #gi,(y) in [0,1]). Let j: (0,1]J—R be an inclusion map. Then jog;,(z) #jog; () in R. Hence
X belongs to mon({R}). Let Xemon({I}) i.e., there is a monosource {f;: X—[0,1]};c;. Hence for
z#y in X, there is {y=I such that f;,(z)#f,(y) in [0,1). Since [0, 1] is completely regular, there
is a continuous function u : [0, 13—(0, 1] such that «(f;,(z))=0, «(f.,(¥))=1. Then X is a com-
pletely Hausdorff space. Then for any distinct points z,y, there is a continuous v : X—{0,1] such
that v(z)=0, v(y)=1. Thus X belongs to mon((0,1]). The two point space {0,1} with only non-
trivial open set {1} is called the Sierpinski space and denoted by S.

Example 4. Let S be a Sierpinski space. Then mon ({S})=Top.

Proof. Let {f;: X—S).c; be a monosource and let z#y in X, Then there is i;,=] such that
Jolx)=0, fi,(=1 (or fi,(@)=1, fi,(¥)=0) so that f;,"1(1) is an open nbd of ¥ which does not
contain ro,, Hence X is a Ty-space. Conversely, let X be a T,-space, and let z#y in X, Assume
there is a2 nbd U of z which does not contain y. Then Xy is a continuous map from X to S and
Xu{z) #Xu(y). Hence C(X,S) is a monosource. Thus X belongs to mon({S}).

Let D be the two point discrete space {0,1}, Comp Sep be the category of completely seperated
spaces and Tdisc be the category of totally disconnected spaces.

Example 5. mon({D})=Comp SepCdisc.
Proof. Let {f;: X—D},.; be a monosource. Thus for every distinct points z,y in X, such that
Si(z)=0 and fi(y)=1. Let f;i71(0)=U; and f;}(1)=V: Then U;\V:=¢. Fix z in X and let y#=z

in X, Then Q (l)],: {z}, where U, is clopen. Hence X belongs to Comp Sep. Let X be a completely
yeEX-(x -

seperated space, then C(X, D) is a monosource and hence X belongs to mon({D}).

Finally, we must show that Comp Sepc Tdisc. Let X be a completely seperated space and suppose
CyDiz,5). Since {z}=N{U|U is a clopen nbd of z}, there is a clopen nbd U of z such that
¥EU, and hence {z,y} is disconnected which is a contradiction. Thus Cy={z}. Thus X is a totally
disconnected space.
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