A Theorem on the Composition of Quadratic Forms

by Kee-Soo Park Korea University, Seoul, Korea

1. Introduction

Historically, the problem of composition of quadratic forms over a field F asks the following: for what value of m and n does there exist a formula

$$(X_1^2 + \dots + X_n^2) (Y_1^2 + \dots + Y_n^2) = Z_1^2 + \dots + Z_n^2$$
(*)

where $Z_1,...,Z_n$ are homogeneous bilinear forms in the two sets of variables $X_1,...,X_m,Y_1,...,Y_n$.

In (*) holds, then the Clifford algebra $C^{m-1,0}$ of the quadratic space $(m-1) \langle -1 \rangle$ has an *n*-dimensional representation over the field F(**). Letting $\rho_F(n)$ denote the biggest possible value k such that $C^{k-1,0}$ has an *n*-dimensional representation over F, then the above says nothing more than $m \leq \rho_F(n)$.

Radon proved that the converse of (**) also holds for F=R.

The conclusion of this paper shows the converse of (**) doesn't hold for F=C.

2. Preliminary and Main Results

Let (U, λ) , (V, φ) be F-quadratic spaces, of dimension m and n. If there exists a bilinear pairing $U \times V \to V$ denoted by $(x, y) \mapsto x \cdot y$, such that $\varphi(x, y) = \lambda(x) \cdot \varphi(y)$ for all $x \in U$, $y \in V$ (***), (***) reduces to (*) in the special case where $\lambda \cong m\langle 1 \rangle$, $\varphi \cong n\langle 1 \rangle$. For a vector $u \in U$, with $\lambda(u) \neq 0$, we can make $\lambda(u) = 1$, and u acts as the identity on V by multiplication on scaling λ by a multiple and modifying the multiplication.

The following theorem by Radon gives idea to prove our main theorem.

Theorem (Radon). The formula (*) exists for the field F=R iff $m \le \rho_R(n)$

Proof. The "only if" part holds for an arbitary field F, and is found in [1].

We prove here only the "if" part.

Assume $m \leq \rho_R(n)$. Let $\{e_1, ..., e_m\}$ be an orthonormal basis for (U, λ) and $U_0 = \sum_{i \geq 2} Fe_i$. Then the Clifford algebra of $(U_0, -\lambda)$ becomes $C = C(U_0, -\lambda) = C^{m-1}, 0$. Since $\varphi \cong n < 1 >$, we may think of the quadratic space (V, B, φ) as R^n equipped with the usual inner product. By definition of ρ_R , there exists a linear representation $L: C \to \text{End } V = M_n(R)$. Let G be the multiplicative group, generated by the invertible elements $e_i (2 \leq i \leq m)$ and -1 in C.

Since we have the relations $e_i^2 = -1$, $e_i e_j = -1$, $e_i e_j = -e_j e_i$ for $2 \le i \ne j \le m$, G is obviously a finite group.

By the theory of group representation $L: C \to M_n(R)$ is equivalent to an orthogonal representation. Thus, after changing L by a conjugation on $M_n(R)$, we may assume that each $L(e_i)$ $(2 \le i \le m)$ is 40 Kee-Soo Park

an isometry on R^n . The rule $(x,y) \mapsto x \cdot y = L(x)(y)$ clearly defines a bilinear pairing $U_0 \times V \to V$, and it satisfies

$$B(y, e_i y) = B(e_i y, e_i(e_i y)) = -B(e_i y, y) \quad (2 \le i \le m, y \in V).$$

This shows $B(y, e_i y) = 0$, and hence $B(y, x \cdot y) = 0$ for $x \in U_0$, $y \in V$.

We may now create a pairing $U \times V \to V$, by $(\alpha u + x) \cdot y = \alpha y + L(x)(y)$ $(\alpha \in F, x \in U_0, y \in V)$. This is easily checked to be bilinear. Then it is clear B(y, L(x)(z)) + B(z, L(x)(y)) = 0 $(y, z \in V, x \in U_0)$. Replacing z by L(x)(z), and using $L(x)^2 = -\lambda(x) \cdot 1_v$, we obtain $\lambda(x) B(y, z) = B(x \cdot y, x \cdot z)$ whenever $x \in U_0$. A simple calculation shows that the same holds for any $x \in U$ (assuming, of course, $\lambda(u) = 1$). Putting y = z, we capture (**), and thus we obtain (*).

With a classical result of Schur in group representation theory (3), we can prove our main theorem.

Main Theorem. If (*) holds over the complex field C, then it already exists for the real field R. **Proof.** Keeping all notations in the preceding proof.

Thus U, V denote R^m, R^n, C denotes the real Clifford algebra $C^{m-1,0}$, etc. We write "bar" to denote complexification $C \otimes R$.

Assume (*) exists over C. Then we get a representation $\sigma: \overline{C} \longrightarrow \operatorname{End}_{c} \overline{V}$.

Since $B(e_iy, e_iz) = \overline{\lambda}(e_i)B(y,z) = B(y,z)$ for $y,z \in \overline{V}$, restricted to G is a representation of G by complex orthogonal matrices. By the theorem of Schur, $\sigma|_G$ is equivalent to a real representation, and hence equivalent to a suitable real orthogonal representation. Changing σ by conjugation if necessary, we may suppose that $\sigma(G) \subset O(V, \varphi)$, here $O(V, \varphi)$ denotes the group of isometries of V. Since G spans C as a real algebra, we conclude $\sigma(C) \subset \operatorname{End}_R(V)$. By Radon's theorem we conclude that the formula (*) exists for R.

As an application we prove that the converse of (**) doesn't hold for F=C.

Corollary. The converse of (**) doesn't hold for F=C.

Proof. Let n be such that $\rho_R(n) < \rho_C(n) = m$. Then the complex Clifford algebra C^{m-1} , has an n-dimensional C-representation. If the converse of (**) hold, our theorem induce a contradiction.

References

- 1. T.Y. Lam, The algebraic theory of quadratic forms, Bejamin, 1973.
- 2. O.T. O'Meara, Introduction to quadratic forms, Springer-Verlag, 1963.
- 3. I. Reiner, Linear representation of finite groups and associative algebras, Interscience, 1962.