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Probability Measure and the Daniell Integral

by Heo Jin O
Kongju National Teachers College, Kongju, Korea

1. Introduction

It is sometimes convenient to introduce integration directly without using the concept of measure.
This happens when we have an elementary integral I defined on some class L of elementary func-
tions. Our purpose of this paper is to describe the Daniell integral and to show its connection.

In this paper we shall define the Daniell integral and probability measure. And we showed that

there exists a unique probability measure on o-field of vector lattice VL and investigated some theo-

rems about measures on g(VL),

2. Definitions and Remarks

Definition 1. Let VL be a vector lattice. Then a positive linear functional I on VL is called a
Daniell integral if the following condition is satisfied.
If (f.) is a nonincreasing sequence in VI converging to zero, then I(f,) converges to zero.

Theorem 1. Let VLU be the collection of all extended real-valued functions on X of the form
supf., where (f,) is a nondecreasing sequence of nonnzgative functions in VL, Let J=|GCX : o= VLU]}
and define (G)=I(Xg), where I is the extension of I to VLU. Then the VL-open sets and the extended
nonnegative function p on these sets satisfy the following conditions:

@) If G, G,&d, then GiUG,, GNG,=J and

#(GIUG) +p(GiNG) =p(Gy) - u(Gy).

(1) If G, Gy&Jd and G,CG,, then p(G)) Lp(G,).

i) If G,ed, n=1,2,- and G, 1G, then G=J and u(G,) T u(G).

Proof. (i) By the definition of

#(GIUGY) +p(GiING,) =1(Xe,ue,) +1(Xeine,)
—=1(Xe,) 1 I(Xs,)
=p(G)) 4 1(Gy).

(ii) This follows from the definition of s,

(iii) Let (f.) be a sequence in VLU and f,1f, Then feVLU and I(£,) 1 I(S).
Thus p(G,)=1(%z) 1 I(Xe) =p(G).

Definition 2. A measure on a o-field F of subsets of X is a nonnegative, cxtended real-valued

function g on F such that
F‘( U An) = ZF (An)
for every sequence A, of pairwise disjoint sets of F.
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If p(X)=1, p is called a probability measure.

Theorem 2, Let J={GCX : X.=VLU)} and define p(G)=I:), G=J. If we assume that all
constant functions belong to VL and I(1)=1 (hence I(c)=c for all ¢), then J and p satisfy the
Sfollowing conditions:

@) If ¢, X, then p($)=0, p(X)=1, 0<p(A)K1 for all A=l.

(@) If G, G:&d, then GIUG:, GiNG,=J and p(G,UG,) +1(GNG) =p(G,) +p(G,).

(i) If G,,G,&J and G,CG,, then u(G,) <p(G,).

(o) If G,&J, n=1,2,- and G, 1G, then G&J and n(G,) 1 u(G).

Proof. (i) Since VL contains the constant functions and I{c)=¢, condition (i) holds.

(i), (iii) and (iv) These statements follow from theorem 1.

Theorem 3. Under the hypothesis of theorem 2, let Y={HCX : p*(H) +p*(H)=1} and define
1 (A)=inf{u(G) : GeJ, GDA)}, ¢))
Then p* is a probability measure on the o-field Y and p*—=p on J.
Proof. By the definition of ;* we have p*=p on J.
Since y*(AUB) +p*(ANB) <p*(A) +p*(B), for H,, H=X,

¥ (Hy U H) + 7 (H NV Hy) < (HY) -+ p* (H), @
and since (H,\UH,)‘=H,‘NHy, (HiNH)*=H" UH,,
p*(H U Hp) -+ p* (Hy VHp) t < p* (H°) + p* (Hy). (3
Adding (2) and (3), we have
p*(H\UHy) +p*(HUH,)*=1 Y
and
p* (HiNHy) +p* (Hi N Hy)e=1. )

Hence H,UH,, HNH,=Y. Thus Y is a field.

By (4)and (5) we have p*(H,UH,) +p* (H, N H,) =p*(Hy) +p* (Hy).
Therefore p* is finitely additive on Y,

Let H, &Y, n=1,2,-, H, 1 H; u*(H) +p*(He)>1.

But u*(H)=lim,....*(H,), hence for any £>0, u*(H)<u*(H,)+e for large n. Since p*(HF)
<p*(H,) for all n and H,eY, we have p*(H)+p*(He) <1+e¢. Since ¢ is arbitrary, He=Y, Hence
Y is a o-field. Since p*(H,)—p*(H), p* is countably additive. Thus g* is a probability measure
on Y.

Theorem 4. Let VL be a vector lattice of functions on a set X and let I be a Daniell integral on
VL. Then there is a unique measure v on (VL) such that
()= f Fdv for all f in VL,
and
v(A)=inf{p(G) : GDA and G is VL-open}. (6)
Proof. Let v be the restriction of y* defined by equation (1) to o(VL). Obviously equation (6)
is satisfied. Suppose G is VL-open. Then
1) =p(@) =p* @) =(6)= [ todv. - @
If f=VL and £>0 then f=sup h, where
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ug"

hu=2—1,.‘§1 Xyraren.
Each {k/2"< f} is VL-open so that &, is in VLU. Using equation (3), we have
2" 2" n2"
I(hy =2Lnk§11(xm/z“</))=2—1£§lfx Xu.v/'z"</)€1'1’T~217f(\,k}____—.}x X(,;/Z~</~,du==f'\,h,,dv.
Since I(h,) 1 I(f), we have

1py=tim [ hdv= | sab.
Also since 0<{I(f)< oo, f is v-integrable. If f is an arbitrary function in VL the integrability of
f and the equation I(f)= f . fdv follows by writing f as the difference of the nonnegative func-
tions f* and f~ in VL,
For any VL-open set G, there exists a sequence (f,) from VL with f,>>0 and f, 1 X;. Thereforc
if v/ is any measure such that I(f):fx fdv for all fin VL, then

' (G)= f Xods/ =lim f Fudv'=lim 1(£)=p*G).

Since v/ (G) =p*(G) for each VL-open set G, »=v' from equation (7).

Theorem 5. Under the hypothesis of theorem 4, assume that I(1)=1, Then there is a unique proba-
bility measure P on a(VL) such that cach f=VL is P-integrable and I(f):JrX fap.

Proof. Let P be the restriction of ¢* to ¢(VL). Sincc ¢{VL)=q(J), P isa probability mcasurc
by theorem 3. If G&J, then

106) =4(6) =u*(©)=P(©) = [ _ tedp.
The existence of the desired probability measure P follows from the preceding theorem. If P’ is

another such measure, thenfxfdpzfx fdp’ for all f= VL, and hence for all f= VLU, By setting
f=%;, GeJ, we have P=P’ on J, Since J is closed under finite intersection by theorem ], P=P’
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