On π-Injective and p-Injective Modules

by Seon Jeong Kim
Seoul National University, Seoul, Korea

1. Introduction

Throughout this paper, we assume that rings are associative and have identity elements. Also, every module is left and unitary.

Let M be a left R-module. A left R-module Q is called M-injective if every homomorphism of any R-submodule of M into Q can be extended to a homomorphism of M into Q. An R-module M is said to be p-injective if, for any principal ideal P of R, any left R-homomorphism $g: P \rightarrow M$, there exists $y \in M$ such that g(b) = by for all $b \in P$. An R-module M is said to be π -injective if for every pair M_1 , M_2 of (non-zero) submodules of M with $M_1 \cap M_2 = (0)$, each projection $\pi_i: M_1 \oplus M_2 \rightarrow M$, i=1,2; can be lifted to an endomorphism of M. Obviously, any injective, quasi-injective module is π -injective. But there exists a module which is π -injective and not quasi-injective[3].

In this paper, we consider rings whose p-injective left modules are π -injective.

2. Main Theorems

First, we begin with the following lemma (3, p. 148).

Lemma 2.1. Let M and N be R-modules such that $M \oplus N$ is π -injective. Then M is N-injective and N is M-injective.

Theorem 2.2. The following conditions are equivalent:

- (1) R is left Noetherian ring whose p-injective left modules are injective.
- (2) Every p-injective left R-module is injective.
- (3) Every p-injective left R-module is quasi-injective.
- (4) Every p-injective left R-module is π -injective.

proof. It is obvious that (1) implies (2), (2) implies (3) and (3) implies (4). Assume (4). Let M be a p-injective left R-module, E(R) the injective hull of R. Since the direct sum of p-injective modules is p-injective, $E(R) \oplus M$ is p-injective. Now, by assumption, $E(R) \oplus M$ is p-injective. Then, by Lemma 2.1, M is E(R)-injective, and hence injective. Note that any direct sum of p-injective left R-modules is p-injective. Thus any direct sum of injective left R-modules is p-injective, and hence injective, by above proof. Hence R is left Noetherian [2, Theorem 20.1]. And this completes the proof.

Corollary 1. The following conditions are equivalent:

- (1) R is a principal left ideal ring.
- (2) Every p-injective left R-module is π -injective and every finitely generated left ideal of R is principal.

proof. Let R be a principal left ideal ring. Then Baer's criterion implies that p-injective R-module is injective and also π -injective. Conversely, assume (2). Then, by Theorem 2.2, R is Noetherian. hence every ideal is finitely generated. Thus (2) implies (1).

Corollary 2. If the sum of any two p-injective left R-modules is π -injective, then R is left Noetherian, left hereditary.

proof. Since the assumption implies (4) in Theorem 2.2, R is left Noetherian and every p-injective left module is injective. Recall that R is left hereditary iff the sum of any two injective left R-modules is injective. Thus the proof is complete.

Theorem 2.3. The following conditions are equivalent for a commutative ring R:

- (1) R is Noetherian and hereditary.
- (2) The sum of any two p-injective R-modules is injective.
- (3) The sum of any two p-injective R-modules is p-injective and π -injective.

proof. It is obvious that (2) implies (3). By Corollary 2 to Theorem 2.2, (3) implies (1). And (1) and (2) are equivalent [5, Proposition 5].

Theorem 2.4. The following conditions are equivalent:

- (1) Any π -injective left R-module is injective.
- (2) The direct sum of any two π -injective left R-modules is π -injective.
- (3) Any direct sum of π -injective left R-modules is π -injective.
- (4) R is Noetherian and each π -injective left R-module is injective.

proof. It is obvious that (1) implies (2), (3) implies (2) and (4) implies (1). By Proposition 2.6 in [1], (2) and (4) are equivalent. Finally, recall that if R is Noetherian, then any direct sum of injective left R-modules is injective. Now (3) follows from (4) easily.

References

- 1. Ahsan, J., On π-injective modules, Tamkang J. Math., 10, No. 2 1979, 223-229.
- 2. Faith, C., Algebra II: Ring Theory, Berlin-Heidelberg-New York, Springer, 1976.
- 3. Jain, S.K., Ring Theory, Lect. Notes in Pure and Applied Math., V. 25, Marcel Dekker, Inc., 1976.
- 4. Michler, G.O., On rings whose simple modules are injective, J. Algebra, 25 (1973), 185-201.
- 5. Yue Chi Ming, R., On quasi-injectivity and von Neumann regularity, Mh. Math., 95 (1983), 33-44.