BEBENTAGE<HBEET> Journal of the Korea Society of Mathematical Education
1984. 12, Vol. XXIII, No. 1 Dec. 1984, Vol. XXIII, No. 1

On z-Injective and p-Injective Modules
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1. Introduction

Throughout this paper, we assume that rings are associative and have identity clements. Also,
every module is left and unitary.

Let M be aleft R-module. A left R-module Q is called M-injective if every homomorphism of
any R-submodule of M into Q can be extended to a homomorphism of M into Q. An R-module
M is said to be p-injective if, for any principal ideal P of R, any left R-homomorphism g : P—M,
there exists y=M such that g(b)=by for all b&P. An R-module M is said to be m-injective if for
every pair M,, M, of (non-zero) submodules of M with M;N\M,=(0), each projection =, : M\(DM,
—M, i=]1,2; can be lifted to an endomorphism of M, Obviously, any injeciive, quasi-injective
module is n-injective. But there exists a module which is z-injective and not quasi-injective(3].

In this paper, we consider rings whose p-injective left modules are m-injective.

2. Main Theorems

First, we begin with the following lemma[3, p. 148].

Lemma 2.1. Let M and N be R-modules such that M@DN is n-injective. Then M is N-injective
and N is M-injective.

Theorem 2.2. The following conditions are equivalent:

(1) R is left Noetherian ring whose p-injective left modules are injective.

(2) Every p-injective left R-module is injective.

(3) Every p-injective left R-module is quasi-injective.

(4) Every p-injective left R-module is n-injective.

proof. It is obvious that (1) implies (2), (2) implies (3) and (3) implies (4). Assume (4). Let
M be a p-injective left R-module, E(R) the injective hull of R, Since the direct sum of p-injective
modules is p-injective, E(R)@M is p-injective. Now, by assumption, E(R)@M is p-injective. Then,
by Lemma 2.1, M is E(R)-injective, and hence injective. Note that any direct sum of p-injective
left R-modules is p-injective. Thus any direct sum of injective left R-modules is p-injective, and
hence injective, by above proof. Hence R is left Noetherian [2, Theorem 20.1]. And this completes
the proof.

Corollary 1. The following conditions are equivalent:

(1) Ris a principal left ideal ring.

(2) Every p-injective left R-module is n-injective and every finitely generated left ideal of R is

principal.
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proof. Let R be a principal left ideal ring. Then Baer’s criterion implies that p-injective R-mo-

dule is injective and also m-injective. Conversely, assume (2). Then, by Theorem 2.2, R is Noe-
therian. hence every ideal is finitely generated. Thus (2) implies (1).

Corollary 2. If the sum of any two p-injective left R-modules is m-injective, then R is left Noe-

therian. left hereditary.

proof. Since the assumption implies (4) in Theorem 2.2, R is left Noetherian and every p-injec-

tive left module is injective. Recall that R is left hereditary iff the sum of any two injective left
R-modules is injective. Thus the proof is complete.

Theorem 2.3. The following conditions are eguivalent for a commutative ring R:
(1) R is Noetherian and hereditary.

(2) The sum of any two p-injective R-modules is injective.
(3) The sum of any two p-injective R-modules is p-injective and n-injective.

proof. It is obvious that (2) implies (3). By Corollary 2 to Theorem 2.2, (3) implies (1). And

(1) and (2) are equivalent (5, Proposition 5).

Theorem 2.4. Tke following conditions are equivalent:

(1) Any m-injective left R-module is injective.

(2) The direct sum of any two n-injective left R-modules is m-injective.
3) Any direct sum of m-injective left R-modules is =-injective.

(4) R is Noetherian and each =-injective left R-module is injective.

proof. It is obvious that /1 implies 2, '3 implies 72, and {(4) implies ¢1). By Proposition

2.6 in {13, (2) and (4) are equivalent. Finaily, recall that if R is Noetherian, then any direct sum

of

LN

injective left R-modules is injective. Now '3, follows from (4, easily.
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