DAEMAN HWAHAK HWOEJEE (Journal of the Korean Chemical Society) Vol. 28, No. 5, 1984 Printed in the Republic of Korea

지환체-Arendiazocyanide, Nitrosobenzene의 (4+2) 고리첨가 반응에 대한 분자궤도론적 연구

全容求[†]·朴聖珪*·金一斗*·李益春** 대전기계창 *조선대학교 문리과대학 화학과 **인하대학교 이과대학 화학과 (1984. 2. 15 접수)

MO Studies on (4+2) Cycloadditions of Substituted-Arenediazocyanides and Nitrosobenzenes

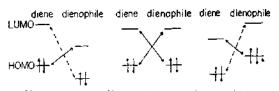
Young Gu Cheun[†] · Seong Kyu Park* · Il Doo Kim* and Ikchoon Lee*

Daejeon Machine Depot, P.O. Box 35, Daejeon 300, Korea

*Department of Chemistry, Chosun University, Kwangju 500, Korea

**Department of Chemistry, Inha University, Incheon 162, Korea

(Received February 15, 1984)


요 약. 치환체-E-arenediazocyanides 와 nitrobenzenes 의 (4+2) 고리침가 반응의 배향성에 대한 치환기 및 산 촉매효과와 반응성을 예측하기 위하여 Diels-Alder 반응의 열 또는 촉매반응에 대하여 Frontier Molecular Orbital(FMO) 이론을 적용해서 CNDO/2 방법과 EHT-SPD 방법으로 고찰하였다. (1) 위 반응은 Hammett 식의 $\operatorname{rho}(\rho)$ 값이 양이므로 Normal electron demand 반응형태를 가지며 4-FMO 및 Anh 방법이 실험적인 주 배향체와 일치함을 알았다. (2)전자끄는 기로 치환되면 dienophile 의 HOMO, LUMO 제도함수에너지가 낮아지고 반응성이 커지는 것을 알았다. (3) Lewis 산은 dienophile 과 착물을 형성하고 dienophile 의 LUMO 계수를 정 반대로 분극시켜 주므로 주 배향제는 B형으로 예측된다. (4) diene HOMO-dienophile LUMO 상호작용의 안정화 에너지 (ΔE)와 Hammett 식의 시그마 (σ)값과의 그라프에서는 좋은 직선성을 보여 주었다.

ABSTRACT. This paper aims to predict the substituent and Lewis acid catalysis effect or reactivity on the regional regional regional reaction of the substituted-E-arene-diazocyanides and nitrosobenzenes. Frontier orbital theory (FMO) has been applied to thermal and catalyzed Diels-Aider reaction by means of CNDO/2 and EHT-SPD methods. It has been found that: (1) The above reaction is positive $\operatorname{rho}(\rho)$ values in Hammett equation, so it takes normal electron demand reaction, and four-frontier orbitals and Anh methods are identical with experimental major regionsomer. (2) When electron withdrawing radicals are substituted, HOMO and LUMO energies of dienophiles are reduced, and the reactivity is increased. (3) The major regionsomer is predicted as B type, as the Lewis acid makes complexes of dienophile, and polarizes LUMO coefficients of dienophile in an opposite way. (4) The linear correlation of Hammett is indicated in the graph of stabilized energies (ΔE) and sigma (σ).

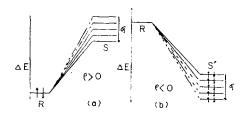
서 론

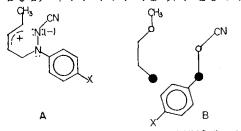
1928년 공액 diene 과 olefine 을 반응시켜 치 화되 cyclohexane 을 얻은 이래 Diels-Alder 반응 에 대하여 많은 화학자들이 실험적인 연구를 통 하여 메카니즘을 규명하여 왔다¹. Diels-Alder 반응의 주요 관심은 입체선택성과 배향선택성인 데 입체화학에 대해서는 많은 문제가 해결되었 지만 배향화학(regiochemistry)에 대해서는 많은 문제가 해결되지 않은 상태로 남아 있으며2 더우 기 heterodienophiles 와 diene 의 반응에 대해서 는 체계적인 연구가 되어있지 않은 상태이나³ 1967년부터 heterodienophiles 와의 Diels-Alder 반응에 대한 포괄적인 연구가 시작되었다. Diels-Alder 반응에서 배향성(regioselectivity)을 전자효과나 입체효과로서 설명할 수 없으며10,5 diene 의 전자주기 치환기를 전자끄는 치환기로 치환시켰을 때도 배향성이 변하지 않는다는 연 구가 있었다. 그동안 여러 화학자들에 의해서 perturbation molecular orbital (PMO), intermolecular orbital(IMO)등의 MO 방법으로 Diels-Alder 반응에 대해서 연구하여 왔지만^{5.7} frontier molecular orbital (FMO) 방법이 배향성을 예측하 는데 가장 좋은 결과를 주고 있다는 것이 밝혀 졌다8.9. FMO 방법에서는 frontier orbital의 HOMO-LUMO 쌍만이 고려되며 두 반응물의 말 단계수에 의해서 배향성이 결정된다. 어떤 경우 에서는 primary orbital interaction(POI) 이외에 secondary orbital interaction(SOI)이 배향성을 결정해 주었고 POI와 SOI의 상대적인 중요성 에 의해서 배향성이 결정된다는 연구가 있었다" 배향성에 미치는 산 촉매효과에 대해서 여러 연 구자들이 이론적으로 고찰하였으며11,12 일반적으 로 산촉매는 dienophile 에 착물을 형성한다.

Diels-Alder 반응은 FMO 이론에 따르면 Fig. 1과 같이 (1)diene HOMO 와 dienophile LUMO 상호작용이 반응을 지배하는 normal electron demand reaction, (2)diene HOMO 와 dienophile LUMO, diene LUMO 와 dienophile HOMO 상 호작용이 모두 반응에 기여하는 neutral electron demand reaction, (3)diene LUMO 와 dienophile

Normal electron Neutro: electron Inverse electron demand demand (HOMO controlled) (HOMO, LUMO controlled) (LUMO controlled)

Fig. 1. Types of Diels-Alder reactions according to the FMO model.




Fig. 2. FMO's interactions and sign of ρ , (a) S is an electrophile (b) S' is a nucleophile.

HOMO 상호작용이 반응을 지배하는 inverse electron demand reaction 이 있으며¹³ Rousseau 등도 FMO 상호작용과 Hammett 식의 ρ값의 부 호에 따라 Fig. 2와 같이 ρ>0에서는 diene HOMO-dienophile LUMO 상호작용이 반응을 지배하는 HOMO 조절반응이며 ρ<0에서는 diene LUMO-dienophile HOMO 상호작용이 반 응을 지배하는 LUMO 조절반용이라고 하였다¹⁴. 본 연구에서는 Gapinski 등 5의 실험적인 연구를 (1) mono- or di-methyl butadienes 와 p-substituted-E-arenediazocyanides 및 p-substituted nitrobenzenes의 고리화반응에서 반응성과 배향 성에 미치는 효과, (2) 이들의 반응에서 Lewis 산이 차물을 이루는 위치 및 배향성에 미치는 효과, (3)Hammett 식과 FMO 이론에 의한 반응 성과의 관계등을 분자궤도론적으로 고찰하였다.

계 산

(1) 좌표 및 파동함수의 계산. diene 과 dienophile 들의 좌표 계산을 위해서 결합길이와 결합 각은 표준값¹⁶을 사용하였으며, 각 치환체들의 이면각은 diene 과 dienophile 골격평면에 대하 여 최적화하였다. 각 분자들의 과동함수 계산은 s, p, d 궤도를 보정한 extended Hückel theory (EHT) 방법과 반경험적인 complete neglect of differential overlap(CNDO/2) 방법으로 하였다.

(2) FMO 상호작용 에너지의 계산¹⁷. 고리화 반응을 Scheme 1 과 같이 concerted mechanism 으로 생각하고 두 상호작용에 기여하는 4개의 반응중심을 계산에 넣은 4-중심방법, 두 상호작용을 모두 고려하였으나 안정화에너지에 기여하는 궤도함수의 계수가 큰 것만을 계산에 넣은 2-중심방법, 에너지 차이가 작은 것이 안정화에너

Zwitterionic intermedate (two step mechanism)

HOMO(diene) L'UMO (dienophile) (concerted mechanism)

Scheme 1

지에 크게 기여하므로 에너지 분리가 작은 상호 작용만을 고려한 Herndon 방법, 에너지 분리가 작은 상호작용만을 고려하고 그 중에서도 궤도 함수의 계수가 큰 것만을 고려한 Anh 방법³⁶, POI에 비결합 상호작용을 함께 고려한 SOI 방법¹⁸등을 사용하였다.

결과 및 고찰

(1) 치환기 및 산 촉매효과. Table 1 에서 보는 바와같이 R₃에 메칠기가 치환되면 HOMO 계수는 치환기로부터 먼 말단계수를 크게 분리시켰으며 LUMO계수는 C₁과 C₄를 거의 비슷하게 분리시켜 주었다. R₁이 메칠기로 치환되가 나 R₃, R₄에 메칠기가 치환된 경우에는 C₁과 C₄계수를 거의 비슷하게 분리시켜 주었지만 C₂계수는 C₁보다 크게 나타났다. R₁, R₂가 메칠

Table 1. Eigenvectors of mono- or di-substituted 1, 3-butadienes

R	٩
9 ₃ /	A,

_	Т	[T	CM00/2						EHT-SPD													
R,	R ₂	H.	R,		Э.	0 14	- 0			L	U H	0			R ·	о и			r	L	n n	٥	
_	Ī.	Ĺ	Ι'	c,	c,	c,	C.	(a, u)	C ₁	c2	c3	c,	Energy (a.u)	c ₁	c ₂	с3	C4	Energy (e. v)	c,	с ⁵	e,	C _A	Energy (e , v)
Ħ	ж	Ħ	н	-0.5735	-0.4080	0.4171	0.5750	-0.4144	-0.5696	0,4295	0.4154	-0.5653	0.1160	+0.5555	-0.3607	0.3607	0.5555	-12.4475	0.644)	-0.4569	-0,4569	0,6445	-0.2832
н	н	CH ₅	н	-0.6297	-0.2172	0.3490	0.5030	-0.4608	-0.5595	0.4254	0.4073	-0.5559	0.1179	-0.5976	-0.3672	0.3269	0.5208	-12.3865	0.6000	-0.4490	-0,4650	0.6614	-9,2001
CH,	н	Н	Н	-0.5237	-0.4655	0.5384	0.5525	-0.4440	-0.5623	0.4202	0.4001	-0,5401	0.1165	-0.5296	-0,1272	0.3168	0.5521	-12.2924	0.6541	-0.4079	-0,4639	0,6407	-9.1-20
В	Н	CH ₃	CE,	-0.5621	-0.3663	0.3584	0.5576	-0.4478	-0.5519	0.4142	0.7076	-0.5490	0,1165	-0.5653	-0.3320	0.3549	0.5614	-12,3196	0.6276	-C.4743	-0.4759	0.6287	-9.1559
_	92-	н	н	-0.5755	-0.4494	0.5665	0.5780	-0.4472	-0.5463	0.5506	0,4119	-0.5356	0.1421	-0.5462	-0.4236	0.3181	0.5617	-12.2501	0.6702	+0.3542	-0,4753	0,6750	-0.1285
-(0	H ₂) ₂	н	Н	-0.4464	-0.4291	0.3652	0.4724	-0.3862	-0.5592	0.3686	0.4283	-0.5457	0.1373	-0,4778	-0.4609	0.3522	0.5257	-12.8092	0.6614	-0.5660	-0.4045	0.6556	-R_8655

Table 2. Eigenvectors mono-substituted E-arenediazocyanides

	N2 Ci
	//
x-(O)-	N ₁

	<u> </u>			CND	7/2			EFT-SPD									
- X	HOMO			LUNO			Cha	Charge		OMOK		1	U M	O Che		erge	
	N ₁	N.2	Energy (B.u)	N ₁	N ₂	Energy (a.u)	N ₁	N ⁵	N ₁	N ₂	Energy (e.v)	N ₁	N ^S	Energy (e.v)	N,	N ²	
осн ₅	0.1992	0,3570	-0.4325	0.4752	-0.4954	0.0647	-0.0262	-0.0506	-0.1524	0.3961	-11.551	-0,6863	0.5334	-10.848	-0,2511	-0,2828	
CH ₃	0.2387	0.3888	-0.4454	0.4563	-0.4866	0.0610	-0.0267	-0.0468	-0.0947	0.3946	-11.553	-0.6867	0.5462	-10.896	-0.2360	-0.2574	
Ħ	0.3005	0.4289	-0.4547	0.4673	-0.4989	0.0593	-0.0506	-0.0421	-0.0374	0.2949	-11.553	-0,6866	0.5570	-10.935	-0.2249	-0.2359	
F	0.2606	0.4020	-0.4602	0.4609	-0.4937	0.0536	-0.0279	-0.0436	-0.1041	0,4021	-11.552	-0.6891	0.5418	-10.872	-0.2403	-0.2671	
C1	0.2224	0.3476	-0.4606	0.4175	-0.4745	0.0400	-0.0316	-0.0355	-0,1031	0.3808	-11.553	-0.6609	0.5407	-10,952	~0.237 8	-0.2516	
CN	0.2513	0.3840	-0.4616	0.4093	-0.4663	0.0409	-0.0312	-0.0380	-0,0171	0.1962	-11.553	-0.6663	0.5577	-10.999	-0.2225	-0.2215	
COGE	0.2369	0.3601	-0.4620	0.3637	-0.4365	0.0312	-0.0323	-0.0354	-0.0046	0.0747	-11,553	-0.6528	0.5577	-11,038	-0.2195	-0.2114	
					, 				-		_	-0.6199					

렌기로 치환되면 C₁과 C₂계수가 거의 비슷하고 CH₂로 치환되면 계수 C₁이 C₄보다 크게 나타 났다.

Table 2 및 3에는 p-substituted-E-arenedia-zocyanides의 CNDO/2와 EHT 및 Lewis 산 축매가 존재할 때의 고유벡터를 나타내었다. Table 2에서 보는 바와 같이 페닐고리의 파라위치에 전자미는 기로부터 전자끄는 기로 치환됨에 따라서 N₁과 N₂의 LUMO계수는 점차로 작아지며 LUMO궤도함수 에너지도 점차로 낮아지는 것을 볼 수 있다. Table 3에서 보면 Lewis 산축매반응에서는 -CN기가 결소원자와 착물을 형성하면 산 촉매가 없는 때와는 달리 LUMO계

			x_(· CN			
		HOH	0		LUM	0	Cher	Sen.
-x	H ₁	N ₂	Energy (a, u)	N ₁	H ₂	Energy (a, b)	H ₁	N ₂
осиз	-0.0301	0.2744	-0.5858	0.6031	-0.3286	-0.1676	0.0984	-0.0756
сн	-0.0046	0.3306	-0,6121	0,6004	-0.3324	-0.1694	0.0974	-0.0715
H	0.0495	0,3807	-0,6519	0,6017	-0.3410	-0,1769	0.0975	-0.0639
r	0.0160	0.3510	-0.6372	0.6010	-0.3407	-0.1805	0.0990	-0.0670
C1	0.0106	0,2259	-0.6087	0.5936	-0.3470	-0.1854	0.0970	-0.0615
CN	0,0041	0.3126	-0,6251	0,5928	-0.3441	-0,18 29	0.0967	-0,0636
COORt	0.0028	0.2577	-0.5885	0.5862	-0.3458	-0,1842	0.0997	-0.0611
NO ₂	0.0360	0.3432	-0.5861	0,5608	-0.3553	-0,2068	0.0959	-0,0512

Table 3. Eigenvectors of mono-substituted and protonated E-arenediazocyanides by CNDO/2

수를 정반대로 크게 분리시켰으며 LUMO궤도 함수 에너지도 크게 낮아지고 전자끄는 기로 치 환될 경우 이러한 현상이 더욱 증대되는 것을 알 수 있다. 이상의 사실에서 1-or 2-methyl-1, 3-butadiene 과 p-substituted-E-arenediazocyanides 와의 반응에서 diene 의 말단 계수인 C1과 C4계수가 거의 비슷하기 때문에 Scheme 2의 A 형과 B형이 거의 비슷하게 생성될 것이라고 생 각되나 실험적인 사실에 의하면 1a 와 2a, 2b, 2c, 2d, 2e, 2f의 반응에서는 A형이 주 배향체로 밝 혀졌는데15 이러한 사실은 dienophile의 계수 분 리가 크며 같은 방향으로 크기 때문에 실험사실 과 잘 일치된다. 또한 dienophile의 LUMO 궤 도함수 에너지는 페닐고리의 파라 위치에 전자 미는 기에서 끄는 기로 치환됨에 따라 낮아져서 diene HOMO-dienophile LUMO 상호작용이 더 욱 중대되어 안정화 에너지에 크게 기여하므로 반응성은 전자미는 기에서 끄는 기로 치환될수

Scheme 2

Table 4. Eigenvectors of mono-substituted nitrosobenzenes

								·- <u>(()</u> -	N "							
				CM	00/2							EHT-	-SPD			
-X	F	1 0 M	0	0		L U M O		Charges		н о м		1	, U M	0	Char	ges
	19.	O.	Energy (a.u)	Si	0	Energy (a · u)	N	0	N	0	Energy (e.v)	N	0	(e.v)	Я	0
00%	0.0867	0.2936	-0.4404	0.3983	-0.4611	0.0934	0.0522	-0.1435	0.6187	-0.5185	-11.197	0.5108	-0.3143	-10.115	-0.4504	-1.0074
CH3	0.1132	0.3299	-0.4384	0.3751	-0.4459	0.0875	0.0528	-0.1396	0.1582	-0.0690	-11.674	0.3397	-0.7485	-10.943	0.1316	-0.7583
H	0.1561	0.3778	-0.2427	0.3934	-0.4650	0.0671	0.0529	-0.1358	0,2314	-0.3811	-11.675	0.7521	-0.5632	-10.995	0.1555	-0.7384
P	0.1254	0.3439	-0.4516	0.3857	-0.4563	0.0799	0.0561	-0.1356	0.1735	-0.2664	-11.676	0.7499	-0.5502	-10.914	0,1226	-0.7664
C1	0.0922	0.2662	-0.4547	0.3383	-0,4240	0.0613	0.0542	-0.1274	0.2490	-0.3619	-11.675	0.7194	-0,5410	-11,011	0.1299	-0.7559
CN	0.1174	0.3211	-0.4526	0.3266	-0.4121	0.0617	0.0537	-0.1299	0.2215	-0.3657	-11.674	0.7312	-0.5586	-11.072	0.1639	-0.7275
CCOEt	0.0983	0.2729	-0.4516	0.2789	-0.3718	0.0478	0.0525	-0.1264	0.2117	-0.3624	-11.674	0.7183	-0.5557	-11.120	0.1722	-0.1789
KO2	0.1199	0.3470	-0.4758	0.1508	-0.2418	-0.011	10.0557	-0.1143	0.1853	-0.3406	-11.675	0.4257	-0,3844	-:1.647	0.1941	-0.6885

Table 5. Eigenvectors of mono-substituted and protonated nitrosobenzenes by CNDO/2

			x-(Ō>- r ″	0H+				
x		н о н	0		L C M	0	Charges		
	N	0	(B · U)	В	Ô	Snergy (a · u)	N	0	
осн	0.1500	-0.2047	-0,6354	-0.7127	0.4195	-0.2137	0.2299	0,0076	
CH ₃	0.1608	-0.2572	-0.6726	-0.7106	0,4218	-0,2161	0,2323	0,0114	
Ä	0,0024	0,0028	-0.7050	-0.7163	0.4306	-0,2276	0.2599	0.0186	
F	0.1533	-0.2714	-0.7055	-0.7116	0.4261	-0,2315	0.2590	0.0150	
Cì	0.1084	-0.1559	-0.6546	-0.7019	0.4254	-0.2358	0.2398	0.0168	
CH	0,1441	-0.2345	~ 0.6830	-0.6994	0.4223	-0.2327	0.2377	0,0170	
COOEt	0,0304	-0.0579	-0.6125	-0.6912	0.4200	-0.2534	0.2576	0,0186	
NO ₂	0.1279	-0.2511	~0.6143	-0,6645	0.4140	-0.2606	0.2463	0.0253	

록 더욱 커지는 것을 알 수 있다. 또한 dienophile의 질소원자의 계수분리가 더욱 커져서 Scheme 2에서 보는 바와같이 주 배향체 A를 결정할 수 있으며 이러한 사실은 실험 (2f(8:1), 2c(4:1), 2e(2:1)]¹⁵과 잘 일치한다. Lewis 산 촉매반응에서는 열반응에서와는 달리 LUMO계수를 정반대로 크게 분리시켜 주었으므로 주 배향체는 B형으로 예측할 수 있으며 궤도함수 에너지도 크게 낮아져서 diene HOMO-dienophile -LUMO 상호작용이 열반응에 비해서 크게 증가되어 안정화에너지에 크게 기여하므로 반응성이크게 중가되는 것으로 예측되며 이러한 현상은 전자고는 기로 갈수록 더욱 증대된다.

Table 4 및 5 에 p-substituted-nitrosobenzens 의 CNDO/2, EHT 및 Lewis 산 촉매가 존재할 때의 CNDO/2로 계산한 고유벡터를 나타내었 다. 표에서 보는 바와같이 p-substituted-nitrosobenzenes 의 경우에도 p-substituted-E-arenediazocyanides 와 같이 LUMO 계수는 산소원자의 계 수를 크게 분리시켰으며 LUMO 레도함수 에너 지도 전자미는 기로부터 전자끄는 기로 치환됨 에 따라 점차 낮아지므로 diene HOMO-dienophile LUMO 상호작용이 증가되고 안정화에너 지에 크게 기여하여 주 배향체는 A형으로 결정 할 수 있다. 그리고 Lewis 산 촉매반응에서도 dienophile의 LUMO 궤도함수 에너지를 더욱 낮 추어 주고 원자궤도의 계수분리를 열반용에서와 는[정반대로 크게 해주므로 주 배향체는 B형으 로 결정할 수 있다.

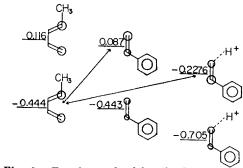


Fig. 3. Frontier moleculal orbital interaction of 1-methyl 1, 3-butadiene and E-arenediazocyanide.

Table 6. Reaction of 1-methyl-1, 3-budiene and substituted E-arene-diazocyanides

Subat	ituents		Thermal reaction Catalyzed reacti									on
	1 tuents	4-Fro	ntie	2-Fro	ntie			4-Fro				
R	х	4-C	2 - C	Hern -don	Anh	5.0.1	Exp.	4-C	2-C	Hern -don	Anh	5.0.1
снз	осн3	A	A	A	A	В	A	A	В	В	В	В
снз	снз	A	A	A	A	В	A	A	A	В	P	8
CH ₃	н	A	A	B	A	В	A	A	A	В	P	В
CH3	F	A	A	P	A	В	A	А	A	В	P	P
CH3	C1	A	A	A	A	A	A	A	В	В	P	ŗ.
CH ₃	CN	A	A	A	A	A	A	В	A	В	P	Б
CH ₃	COOEt	A	٨	A	A	A	A	A	A	В	Р	p
CH 3	NO ₂	A	A	А	Α	A	Α .	A	A	9	F.	12

(2) Normal Electron Demand 반응·Fig. 3 에서 보는 바와같이 1-methyl-1, 3-butadiene HOMO-E-arenediazocyanide LUMO 상호작용의 에너지 분리가 E-arenediazocyanide HOMO-1-methyl-1, 3-butadiene LUMO 상호작용의 에너지 분리보다 작기 때문에 diene HOMO-dienophile LUMO 상호작용이 주 배향체 형성에 크게 기여하는 normal electron demand 반응이다. 산 촉매가 존재할 때에는 E-arenediazocyanide 의 LUMO 제도함수 에너지가 더욱 낮아지기 때문에 diene HOMO-dienophile LUMO 상호작용이 열반응에 비해서 크게 증가되어 안정화 에너지에 크게 기여한다. 1-methyl-1, 3-butadiene과 p-substituted-E-arenediazocyanide 의 반응에서는 diene의 HOMO, LUMO 계수와 dienophile

의 HOMO, LUMO 계수가 같은 방향으로 분리 되어 있기 때문에 두 상호작용에 의한 주 배향 체는 A형으로 결정할 수 있다. 그러나 Table 6 에서 보는 바와같이 4개의 FMO 모두를 고려 한 4-중심, 2-중심방법과 2개의 FMO만을 고 려한 Herndon, 및 Anh 방법은 실험결과와 잘 일치하고 있으나 SOI 방법은 잘 일치되지 않는 다. 이러한 사실은 diene HOMO-dienophile LUMO 상호작용이 안정화에너지에 크게 기여 하는 normal electron demand 반응에서는 diene LUMO-dienophile HOMO 상호작용은 무시될 수 있기 때문이며, 이러한 경향은 전자미는 치 환기가 치환될 경우에 더욱 크게 나타났다. 산 촉매반응에서는 dienophile의 LUMO 궤도함수 에너지가 크게 낮아져서 diene HOMO-dienophile LUMO 상호작용이 크게 중가되지만 dienophile 의 LUMO계수를 정반대로 크게 분리시켜 주기 때문에 예측되는 주 배향체는 B형으로 결정할 수 있다. Table 6에서 보면 산 촉매반응에서 2 개의 FMO만을 고려한 Herndon, Anh방법과 SOI 방법이 잘 맞으며 4-중심, 2-중심방법에서 는 정반대의 배향성을 보여 주고 있다. 그 이유 는 2-FMO방법은 에너지 분리가 작은 diene HOMO-dienophile LUMO 상호작용이 크게 기 여하는 반응에 유리하기 때문이다.

Fig. 4와 Table 1 및 4에서 보는 바와 같이 1-methyl-1, 3-butadiene 과 p-substituted-nitro-sobenzene 의 반응은 diene 에 있는 원자제도함 수의 계수분리가 거의 비슷하기 때문에 dieno-phile 의 계수분리가 큰 역할을 한다. diene

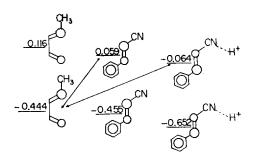


Fig. 4. Frontier molecular orbital interaction of 1-methyl-1, 3-butadiene and nitrosobenzene.

HOMO-dienophile LUMO 상호작용이 배향성을 결정해주는 normal electron demand 반응이며 diene HOMO, dienophile LUMO 계수의 분리방향이 같아서 주 배향체는 A형으로 결정할 수 있다. 산 축매반응에서는 nitrosobenzene의 산소원자가 Lewis 산과 착물을 형성하여 dienophile의 LUMO 제도함수 에너지가 낮아지지만 LUMO 계수를 정반대로 분리시켜 주어 주 배향체는 B형으로 예측되고 dieno HOMO-dienophile LUMO 상호작용이 열반응에서보다 크게 증가되어 안정화에너지에 크게 기여한다.

(3) Hammett 식과 FMO 이론에 의한 반응성과 의 관계, Hammett 식의 ρ값이 양일때는 normal electron demand 반응이 되어 Fig. 5에서와 같 이 σ_i 값이 중가할수록 diene HOMO-dienophile LUMO 상호작용에너지 분리(ΔE_i)가 작아져서 ΔE_i 의 효과가 월등하게 커지므로 ΔE_i 가 반응 을 지배하는 에너지 차의 조절반응이며 ρ값이 옴일때는 inverse electron demand 반응이 되어 σ, 값이 중가할수록 diene LUMO-dienophile HOMO 상호작용에너지 분리가 커져서 반응성이 작아진다156, 2, 3-dimethyl-1, 3-butadiene 과 psubstituted-E-arenediazocyanides 와의 반응에 대 한 ρ값은 2.97154이 므로 normal electron demand 반응이며 에너지 차의 조절반응이다. Fig. 6에 이 반응에 대한 σ값¹⁹과 FMO 상호작용 안정화 에너지(AE)의 관계를 나타내었다. 그림에서 보 는 바와같이 전자미는 기에서 전자끄는 기로 치 환됨에 따라 σ값은 증가하고 에너지의 차 ΔE

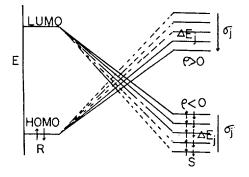


Fig. 5. Change of the favored FMO interaction with increasing σ values.

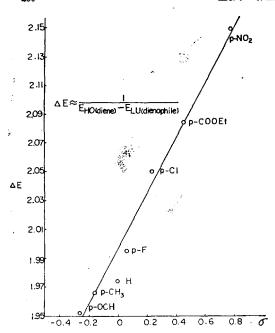


Fig. 6. Correlation of ΔE and σ for the cycloaddition of 2, 3-dimethyl-1, 3-butadiene and p-substituted-E-arenediazocyanides.

가 작아져서 diene HOMO-dienophile LUMO 상호작용의 안정화에너지가 중가하므로 반응성 은 전자미는 기에서 전자끄는 기로 치환됨에 따 라서 증가하고 σ와 ΔE 사이에 좋은 직선성이 나타난다. Fig. 7에는 2,3-dimethyl-1,3-butadiene 과 p-substituted-E-arenediazocyaznides 의 Lewis 산 촉매반응에 대한 σ와 ΔE의 관계를 그라프로 나타낸 것인데 σ와 ΔE 사이에 좋은 직선성이 성립되며 전자끄는 기로 치환될수록 반응성은 증가되며 안정화에너지 4E의 값이 열 반응에서 보다 훨씬 커서 diene HOMO-dienophile LUMO 상호작용 에너지 분리가 작아지므 로 두 FMO 간의 상호작용이 중가됨을 알 수 있 다. 2, 3-dimethyl-1, 3-butadiene 과 p-sbstituted -nitrosobenzene 와의 반응에 대한 ρ 값은 2.53¹⁵⁶ 이므로 이 반응도 normal electron demand 반응 이며 에너지의 차(AE)가 반응성을 좌우하는 에 너지 차의 조절반응이다. Fig. 8에는 위 반응 에 대한 σ 값 19 과 ΔE 의 관계를 그라프로 나타내 었다. 그림에서 보는 바와같이 전자미는 기에서 전자끄는 기로 치환되면 여값이 증가하고 에너지

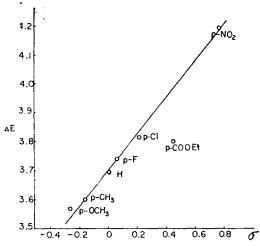


Fig. 7. Correlation of ΔE and σ for the cycloaddition of 2, 3-dimethyl-1, 3-butadiene and protonated-E-arenediazocyanides.

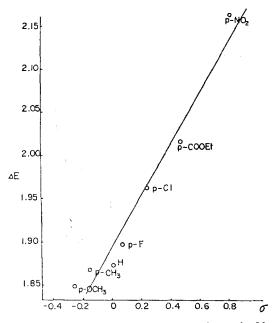


Fig. 8. Correlation of ΔE and σ for the cycloaddition of 2, 3-dimethyl-1, 3-butadiene and p-substituted-nitrosobenzenes.

의 차가 작아져서 diene HOMO-dienophile LUMO 상호작용의 안정화에너지가 커지고 반응성이 증가되며 σ와 ΔΕ 사이에 좋은 직선성이 나타났다. Fig. 9에는 2,3-dimethyl-1,3-buta-diene 과 p-substituted-nitrosobenzene의 Lewis

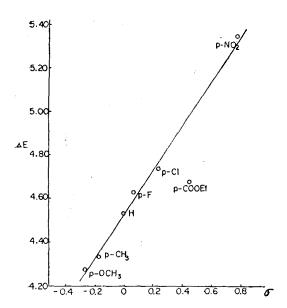


Fig. 9. Correlation of ΔE and σ for the cycloaddition of 2, 3-dimethyl-1, 3-bataddiene and protonated-nitrosobenzenes.

산 촉매반응에 대한 σ있 ΔΕ의 관계를 나타내었다. σ와 ΔΕ 사이에는 좋은 직선성이 있으며 diene HOMO-dienophile LUMO 상호작용의 안 정화에너지 값이 열반응의 경우보다도 크게 중 가되어 에너지의 차가 작아졌으므로 반응성이크게 중가된다고 생각된다.

결 뿐

- (1) 모든 반응은 normal electron demand 반응이며 전자미는 기에서 전자끄는 기가 dienophile 에 치환되면 dienophile의 LUMO 제도함수의 에너지는 작아지고 LUMO 제수의 분리가증가되어 diene HOMO-dienophile LUMO 상호작용이 증대되어 반응의 배향성을 주도하였다.
- (2) Lewis 산 촉매반응에서는 diene 보다 dienophile의 —CN 이나 —NO기가 더 큰 음하전을 띄기 때문에 Lewis 산이 dienophile에 배위하여 착물을 형성하며 dienophile의 LUMO궤도 함수 에너지가 낮아지고 LUMO계수를 정반대로 크게 분리시켜 주므로 주 배향체는 열반응으로 예측할 수 있다.
 - (3) 열반응에서는 4개의 FMO 모두를 고려한

4·중심, 2·중심방법과 Anh 방법이 실험적인 결과와 좋은 일치를 보였으며 Herndon 방법도 비교적 잘 일치되었다. 또한 Lewis 산 촉매반응에서는 2개의 FMO만을 고려한 Herndon, Anh 방법과 SOI방법이 좋은 결과를 예측하여 주었다.

(4) ρ>0이므로 normal electron demand 반응이며 σ값이 증가함에 따라 FMO 상호작용의 안정화에너지가 증가하여 반응성이 커지고 σ와 ΔΕ(또는 logk) 사이에 좋은 직선성이 있음을 알았다.

인 용 문 천

- (a) J. Sauer, Angew. Chem., Int. Ed. Engl.,
 6, 16 (1967), (b) A. Wasserman, "Diels-Alder Reaction", Elsevier, New York, 1965.
- 2. R. Huisgen, J. Org. Chem., 33, 2291 (1968).
- S. M. Weinreb, R. R. Staib, Tetrahedron, 38, 3087 (1982).
- J. Hamer (Ed), "1.4-Cycloaddition Reactions," Academic Press, New York, 1967.
- J. Feuer, W. C. Herndon and L. H. Hall, Tetrahedron, 24, 2575 (1968).
- O. Eisenstein, J. M. Lefour, N. T. Anh and R. F. Hudson, Tetrahedron, 33, 523 (1977).
- T. Inukai, H. Sato and T. Kojima, Bull. Chem. Soc. Jap., 45, 891 (1972).
- (a) W. C. Herndon, J. Feuer, W. B. Giles, D. Otterson, E. Silber, "Chamical Reactivity and Reaction Paths", G. Klopmann Ed., Wiley-Interscience, New York, 1976; (b) K. W. Houk, Acc. Chem. Res., 8, 361 (1975); (c) I. Fleming, "Frontier Orbitals and Orgamic Chemical Reaction", Wiley-Interscience, New York, 1976; (d) R. Sustmann, Pure Appl. Chem., 40, 1569 (1975).
- (a) N.T. Anh, O. Eisenstein, J.M. Lefour, Tetrahedron, 33, 523 (1977); (b) C. Minot, N.T. Anh, Tetrahedron, 33, 533 (1977); (c) N.D. Epiotis, Angew, Chem., Int. Ed. Engle., 13, 751 (1974).
- P. V. Alston, N. M. Ottenbrite and D. D. Sbillacy, J. Org. Chem., 38, 4075 (1973).
- N. T. Anh and J. Seyden-Penne, Tetrahedron, 29, 3259 (1973).

- K. N. Houk, J. Amer. Chem. Soc., 95, 4092 (1973).
- 13. R. Sustmann, Tetrahedron Letters., 2717 (1971)
- O. H. Rousseau, F. Texier, J. Chem. Ed., 55, 437 (1978).
- (a) D. P. Gapinski, M. F. Akern, Tetrahedron Letters, 23, 38, 3875 (1982); (b) M. Ahmad, J. Hamer, J. Org. Chem., 31, 2829 (1966).
- 16. I.E. Sutton, "Table of Interatiomic Distance

- and Configuration in Molecules and Ions", The Chemistry Society, London, (1958 and 1965).
- K. L. Mok and M. J. Nye, J. Chem. Soc., Perkin 1, 1810 (1975).
- P. V. Alston, R. M. Ottenbrite and T. Cohen,
 J. Org. Chem., 43, 1864 (1978).
- L. P. Hammett, "Physical Organic Chemistry,"
 2nd Ed., McGraw-Hill Company, New York,
 1970.