$ZnCe_{1+y}O_2$상에서 일산화탄소의 산화반응 메카니즘

Kinetics and Mechanism of the Oxidation of Carbon Monoxide on $ZnCe_{1+y}O_2$

  • 김규홍 (연세대학교 이과대학 화학과) ;
  • 최재시 (연세대학교 이과대학 화학과)
  • 발행 : 1984.04.20

초록

$ZnCe_{1+y}O_2$상에서 CO산화반응 속도가 $300{\sim}500^{\circ}C$영역에서 측정되었다. 산화반응 속도는 CO에 1차 O2에 0.5차를 나타내는 속도식에 따랐으며 격자점의 산소와 Zn 도프에 기인되어 생성된 Vo-2e' 결함이 CO 및 O2의 활성화 sites로 작용되었다. 전기전도도 데이타와 rate law로 부터 산화반응 메카니즘이 규명되었으며 율속과정이 제안되었다

The catalytic oxidation of CO has been investigated on $ZnCe_{1+y}O_2$ at temperatures from 300 to $500^{\circ}C$ under various P_{CO} and PO_2 conditions. The oxidation rates have been correlated with 1.5-order kinetics: first order with respect to CO and 0.5 order with respect to O2. CO appears to be absorbed essentially on the O lattice of $ZnCe_{1+y}O_2$ as a molecular species, while $O_2$ adsorbs on an O vacancy as an ionic species. The conductivity data show that CO adsorption contributes electron to the conduction band and the adsorption process of $O_2$ withdraws it from an O vacancy. The oxidation mechanism and the defect model of $ZnCe_{1+y}O_2$ are inferred at given temperature and $PO_2'$s from the agreement between the conductivities and kinetic data. It is suggested that CO absorption is the rate-controlling.

키워드

참고문헌

  1. J. Inorg. Nucl. Chem. v.16 G. Brauer;L. A. Gingerich;U. Holtschmidt
  2. J. Inorg. Nucl. Chem. v.26 D. J. B. Bevan;J. Kordis
  3. Z. Anorg. Allgem. Chem. v.227 G. Brauer;H. Gradinger
  4. J. Inorg. Nucl. Chem. v.1 D. J. M. Bevan
  5. Phys. Rev. v.133 C. J. Kevane
  6. J. Amer. Cer. Soc. v.50 P. Kofstad;A. Z. Hed
  7. Z. Naturforsch v.14 J. Rudolph
  8. Rare Earth Research II E. H. Greener(et al.)
  9. Anisotropy in Single-Crystal Compounds v.II R. N. Blumenthal;J. E. Laubach
  10. J. Electochem. Soc. v.118 R. N. Blumenthal;P. W. Lee;R. J. Panlener
  11. Proc. IRE v.42 L. B. Valdes
  12. J. Phys. Chem. v.74 J. S. Choi;K. H. Yoon
  13. J. Phys. Chem. v.80 J. S. Choi;K. H. Kim
  14. J. Phys. Chem. v.85 K. H. Kim;J. S. Choi