Abstract
To investigate the hydration effects on the conformational changes of N-pivaloly-L-prolyl-N-methyl-N'-isopropyl-L-alanin amide (PPMIA), the conformational free energy changes have been calculated by using an empirical potential function varying all the independent degrees of freedom of PPMIA backbones. It is found that cis conformers are folded by a strong intramolecular hydrogen bond involving both terminal CO and NH groups whereas trans conformers accommodate the open conformation. Conformers in the free state are proved to be less stable than in the hydrated state. The free energy changes of cis and trans PPMIA due to the hydration are -50.5 and -39.8 kcal/mole, their conformational energy changes are -52.3 and -41.0 kcal/mole, and their conformational entropy changes are -5.9 and -4.0 e.u., respectively. The free energy changes of cis PPMIA to trans PPMIA in the free and hydrated states are 5.3 and 16.0 kcal/mole, their conformational energy changes are 7.6 and 18.8 kcal/mole, and the entropy changes due to the conformational transitions correspond to 7.5 and 9.4 e.u., respectively. From these results, it is found that the bound water molecules play an important role in stabilizing the conformation of PPMIA.