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Abstract: Oceanographic applications of digital filters are studied with special emphasis on the
convolution filter with Hamming window and the recursive filters. Convolution filters are simple to
understand and easy to design but not efficient for a long data set. Recursive filters, despite of the
complexities, have advantages in economy and filter characteristic. By means of digital filtering
technique we find that the alongshore wind at Pusan and the sea surface temperature at Gampo
in summers during 1973 to 1979 are negatively correlated at low frequencies (periods longer than

5 days) but not so at high frequencies.
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INTRODUCTION

The word “filter” is derived from electrical
engineering, where filters are used to transform
electrical signals from one form to another,
especially to eliminate (filter out) various unde-
sired frequencies in a signal. Many aspects
of the filter theory, such as the design and
use of digital filters, originated in the field
of analog filters. Digital filters generally have
many . advantages compared with the analog
filter because of- their flexibility and economy,
particularly at low 'frequeﬁcies (Kanasewich,
1973, p.204)." _ .
. .In oceanography, running average method -is
fre(iuenth-f used as a !ow'-pass filter, but its per-
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- formance is not so good as-shown . in Fig. 1.
The main shortcomings of the running average
are that the transition band between pass and
stop is too wide, and the amplitude of side lobe

"is too large. Thus the running average method

"is not suitable for a precise analysis. Lie(1978)

-reviewed four filters(mean of 24 hourly heights,
mean of 25 hourly heights, Doodson’s filter and
Demerliac’s filter) for the calculation of daily
mean sea level, and showed that among these
the Doodson’s filter and Demerliac’s filter elim-

- inate almost completely the tidal effects. How-

ever these filters require rather long filter coeffi-

- ciefnts. ’

The purpose of this paper is -to present effec-

“tive and- accurate digital filters suitable for

* oceanographic applications. For this ~purpose

- convolutién -and recursive filters are examinéd
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Fig. 1. Frequency responses of the running averages
by 1 year (12 months) and by 3 months.
Filter coefficients ks of I-year running aver-
age are 1/12 for & from —5 to 5 and 1/24
for 2 of —6 and 6, and those of 3-months
running average are 1/3 for k from —1to 1.

with respect to their performance and efficiency.
It will be shown that the convolution filter with
Hamming window is easy to understand and
its design and use are simpler than the recur-
sive filter, but it is less efficient than the recur-
sive one. As an example of oceanographic app-
lication of the filter, data of the alongshore
wind at Pusan and the sea surface temperature
(SST) at Gampo in summers of 1973~1979
(Lee, 1983) are filtered and analyzed by com-
puting cross-correlation functions between them.

CONVOLUTION FILTER
Digital filters frequently employed in these
days can be grouped into convolution (moving
average, MA) and recursive (autoregressive
moving average, ARMA) types(Robinson and
Silvia, 1978, p.244-268). In this section we

review the convolution filter briefly.
The convolution filter is popular in many
scientific fields because it is easy to design and

to handle. The design of the convolution filter

is based on the Fourier transform of a desired
transfer function in frequency domain. Its filte-
ring operation is usually carried out in time
domain by convolving filter coefficients to input
time series.

Let z, be an input series and y, be the filte-
red output series. A finite version of discrete

convolution can be represented by

M
Y=Yz, (1>
k=-M

where h; is called a kernel of convolution and
M is the one-side length of filter (total filter
length is 2M+1). The z-transformation of (1)
is A

Y(z)=H(z) X(2), ' @
where Y(z), H(z) and X(z) are z-transforms of
ye, B and z,, respectively. If z=exp(—2nifde),
then the z-transformation is equivalent to dis-
crete Fourier transform, and the frequency res-
ponse function H(z) can be written by (Jenkins.
and Watts, 1968, p.46)

H@ =L b, (32>
or
H(f) =3 hy exp(—2nifhde), (3b)

where f is the frequency and 4¢ the sampling
interval. If the convolution kernel %, is an even

function (i.e., Ay=h_,), then (3b) becomes.

H(f) '—Tﬁ]Mh,, cos(2nf kdt)

-;hﬁ-Z%i hy cos(2rfhkdr). (4>
k=

From (4) we see that for symmetric convolution
the frequency response function has no imagi-
nary part, and so there is no phase shift.

Filter coefficients A, can be found from the
Fourier transform of the frequency response
function H(f). That is,

m=ae [ " H(F) exp (2rifkdn)df
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—ods f : " H(f)cos(2nf kAt df, (5)

where fy=1/24t is the Nyquist frequency. The
frequency response function of a ideal low-pass
filter is given by

LOoL < fL,

HY(f)=| )
0, fif<fn.
From (5) and (6), we get filter coefficients
B =24t [lrar=2r.a, (72)
0 0o

and
LP

b =24 f " cos(anf kAt df
& 0

=%sin(27rf,,k4t), k=1,2, ... M. (7b)

In the case of a high-pass filter, the desired
frequency response function is

0, 0< < fa,
H?(f)= | ®)
1; fﬁf;ff;fh,
and the filter coefficients are
HP
ho =24t (fn—fu), (9a)
and
Hp 1 .
A ==—-‘;Z—Sln(2ﬂfhkdt), (gb)

The frequency response function and filter co-
efficients of a band-pass filter are

0, 05 < fu,
HE?(fy= 11, fL<f< fu, 10)
0, fuZlsf<sfn,
h:P=2.4:(fn—fL), (11a)
and

BP

A .—_71,; (sin(2nfukdt) —sin(2xfLhde)).

&
(11b)
The corresponding ones of a band-stop (or band-

reject) filter are

1, 0<f< S,

HE(fy=10, fi<f< fn, (12)
1, fulf<fn,

b =2dt(f y+ Fu—fi), (132)

and

hfs=—nlk— (sin(2nfLkdt) —sin(2nfukdt)).
(13b)

Comparisons of (7), (9), (11) and (13) show
that once the coefficient of low-pass flter is
known, then the other coefficients can be deter-
mined simply by complementary designs.

A truncation of the filter coefficients in time
domain after a certain number of terms and
also a sudden transition between pass and stop
bands in frequency domain bring the oscillation
and overshooting of frequency response function,
known as Gibb’s effect. To reduce this undesir-
able effect, it is convinient to apply a certain
window to the filter coeﬂicieng. Among various
window functions suggested, a simple and
effective one is the Hamming window W, given
by (Golden, 1973, p.544)

W,=0.54+40. 46 cos(zk/M),
k=0, 1,..., M. (14
In the windowing method the filter coefficient
k. is multiplied by the window function W,.
Fig. 2 shows the Gibb's effect and the effect
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Fig. 2. Frequency responses of low-pass convolution
filters. The filter length is 25 (M=12 in (1))
and the specified normarized cut-off frequency
is 0.25. Note that the filter without window
has a remarkable Gibb’s effect, but the fiter
with Hamming window reduces it sufficiently.
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of Hamming window for the low-pass filter with
M=12. From Fig. 2 we see that the Hamming
window is very effective in reducing the Gibb’s
effect, but the cut-off performance is not so
sharp. This problem can be solved by using a
longer filter coefficients. However a long con-
volution filter will need a longer computation
time and loose many data both in the head and
in the tail of the input time series. When we
apply a 2M-+1 long filter to an input time
series, required computations for one filtered
output are 2M-+1 times of multiplication aod
add, and M numbers of data in both the head

and the tail are lost.

RECURSIVE FILTER
It is weil known that recursive filters are
more efficient than convolution ones, because the
recursive filter can have a very short transition
band for a comparatively short span of filter
(Hamming, 1977, p.216). In this section we
review the recursive filter briefly.
Using z-transformtion, a transer function H
(z) can be expressed as the ratio of two ploy-
nomials of A(z) and B(z) as

H<z>=A<z>/B<z>=:z;°a.z*/§obkz~. (14)

where a, and &, are the filter coefficients and
M and N are the corresponding filter lengths.
If we substitute (14) into (2), we get

B(2) Y(z) =A(2) X(2). (15)
In time domain (15) is represented by

M N
bo.‘}’x:;bakl’r-k—kg bny:—.. (16)

Here we assume a priori z,=y,=0 for £<0.
Since (16) is a recursive equation with respect
to v, this type of filter is called a recursive
filter.

Let’s construct a desired recursive filter from
a serial coupling of several simple recursive fil-

ters with two poles and two zeros, i.e.,

L
H(z) '—"*G(;,I:Tl Hy(z), (17a)
where
Hy(z)=(1+anz+anz®) /(1 +bnz-+byuz?),
(17b)

@'s and b’s are constants and G, is the scale
factor resulted from a,=1. Here we refer H,(z)
to a basic filter. (17) shows that the output
from k-th filter becomes the input of (k+1)-th
filter. That is,
Ve, k=Yesk-1F Q1eVi-1, k1 A2e¥i-2, k-1
=By a—budi_zo 18
where .., represents the output from k-tk basic
filter, and u,, ¢ is the input series, i.e., ¥, o=21.
By letting z=exp(—2m'fdt),‘ we get the fre-
quency response H(f) of recursive filter as

H<f>~——cglek<f>, (19a)

where

H(f)= ap+ (l+azk)cosw+1:(l—au)s_inw
' b+ (1 +bgy)cosw+7(1—bau)sine ’

(19b)
and w=2xf4t is the non-dimensional angular

frequecy. (19) shows that the recursive filter
accompanies phase shifts. A zero phase shift
filter, however, can be easily obtained by a bi-
directional cascaded operation, i.e., apply filter-
ing operation in both forward and backward
directions (Kanasewich, 1973, p.199). If there
is a phase shift at a given frequency in the first
pass through the filter, there is the same phase
shift of the opposite sign at the same frequency
in the second (i.e., the reversed) pass. Because
we are processing the output of the first pass as
the input in the reverse pass, the two phase
shifts must cancel exacgly.

The z-transform of cascaded filter, HC(2), is

given by
L ¢
. H¢ (z):GokI_Tl Hk (z), (208)
where
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H\®(z) = Hy(z) Hy(—z) =0 Fan’+ay (14 ay) (27 4 2) +ap (2724 27)

1462507 b (14 bs) (2 + 2) by (27 25 (20b)
By substituting z=exp(—iw), we get the frepuency response, H,°(f), of cascaded flter as

2 2
ch(f)=Hk(f)H:(f)= |Ho(f) 2= 1+ab+ay, +2a1, (1 +azn) cosw+ 2a,c0520

14512+ bos®+ 251, (1+ By cosw & 2bpcosda " 2D

Note that the right-hand side of (21) is real-
valued, and the cascaded recursive filter has no
phase shift. It shoud be noticed that the time
series is filtered twice and, therefore, the amp-
litude response of the cascaded filter is |H(f) |2
instead of |H(f)].

In these days Butterworth, Chebyshev and
elliptic filters are in the classical position among
various recursive filters. Frequency response of
the Butterworth filter, B,(w), is

| Ba(@) |2=1/(1+w™), (22)
and that of the Chebyshev flter, C,(w), is
[Ca(@) |*=1/[1+ (T (@)} 2], (23

where ¢ is a constant and 7,(w)=cos(ncos ')
is the Chebyshev polynomial of order n. The
characteristics of these filters are basically low-
pass types but the transformation to the other
types such as high-pass is quite easy. Frequency
responses of elliptic and another Chebyshev fil-
ters are discussed in Hamming (1977, p. 205-207).
Digitalization of theses analog filters is carried

out by a bilinear z-transform (Kanasewich, 1973,
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Fig. 3. Frequency responses of low-pass Butterworth
and Chebyshev fiiters. These filters are con-
structed by serial coupling of three basic
recursive filters (L=3 in (20a)) with two
poles and two zeros.

p. 187-192), and details of the transformation
can be found in Saito and Ishii (1969), and
Ashida and Saito (1970).

Fig. 3 shows filter performances of Butter-
worth and Chebyshev (equi-ripple in pass band)
low-pass ty;;es. The frequency responses are not
H(f) but HE(f)=|H(f) |2, 1i.e., cascaded
responses. Their computational efficiencies are
nearly same as in Fig. 2, ie.; about 24 times
of multiplication and add per- one output. A
comparison of Figs. 2 and 3 shows that the
recursive filters have more narrow transition
bands from pass and stop than the convolution
filter with Hamming window. If we allow some
ripple in pass band, then the sharpness of cut-
off of the Chebyshev filter increases greatly. It
should be noted that there are distortions in the
head and tail parts of two-sided (cascaded) fil-
tered output, because the recursive filtering in-
volves feedback loops.

COEANOGRAPHIC APPLICATION

As mentioned above the filter performance of
running average method is not so good (Fig.
2). Both the flatness of pass and stop bands and
the sharpness of cut-off are usually required in
the digital filtering of oceanographic time series.
These requirements can be satisfied by the con-
volution filter with Hamming window (Fig. 2)
or by the recursive filters (Fig. 3). In this
section we demonstrate the usefulness of filte-
ring technique by appling it to a set of oceano-
graphic data.

Lee (1983) reported that, in the southeast
coast of Korea in summer, the alongshore wind
at Pusan and the SST at Gampo are related
each other. That is, the SST decreases rapidly
due to upwelling when the alongshore wind
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Fig. 4. Frequency responses of low- and high-pass
convolution filters with Hamming window.
These filters, with filter length of 31(M=15
in (1)) and cut-off periods of 5 days, are
applied to the wind and SST data.
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Fig. 5. Cross-correlation functions between alongshore
wind at Pusan and SST at Gampo in sum-
mer, 1978. The data consist of the original,
the low-passed (periods longer than 5 days)
and the high-passed series (periods shorter
than 5 days), respectively.

blew for more than three days. As an appleca-
tion of the filtering technique, we compute the
cross-correlation functions between the original,
the low-passed and the high-passed series of the
wind and SST data.

Fig. 4 shows frequency responses of 'ow- and
high-pass convolution filters with Hamming win-
dow, which we apply on the wind and SST
data. These filters, with 31 coefficients (M=

15), are designed to have narrow transition
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Fig. 6. Average cross-correlation functions between
alongshore winds at Pusan and SST at Gam-
po in summers during 1973 to 1979. The
data consist of the original, the low-passed
and the high-passed series, respectively.

bands. The midpoint of transition band is 5
days (0.2 cycle/day),
at this frequency. Using these filters we filtered

and the response is 0.5

the daily data of the alongshore wind at Pusan
and the SST at Gampo in summers (4 May~
30 September) during 1973 to 1979, and com-
puted cross-correlation functions between them
for each year separately.

Fig. 5 shows cross-correlation functions bet-
ween the alongshore wind and the SST in sum-
mer, 1978. The cross-correlation function bet-
ween the original (no filtering) series shows
the negative maximum value at time lags bet-
ween 2 and 3 days, which means that the
alongshore wind leads the SST by 2 or 3 days.
However we cannot know what frequency com-
ponent brings the high correlation. Filtered
results give us insights to this question. In fact
the low-passed series show higher correlation
than the original ones at about the same time
lags, but the high-passed series do not show
any significant correlation. In other words, the
high correlation between the wind and SST is
caused mainly due to low-frequency components
(periods longer than 5 days), and the long
pericd variations of alongshore wind generate
those of SST with time lags of 2 or 3 days.
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Table 1. Maximum cross-correlations between alongshore wind at Pusan and SST at
Gampo in summers during 1973 to 1979

Original Low-pass High-pass
Year
Time-lag (days)] Max. correl. [Time-lag(days)| Max. correl. |Time-lag(days)] Max. correl.
1 97 3 2 ~0.23 2 —0.29 —8 -0. 33
1 97 4 2.5 —0.43 3 —0. 58 -2 —0.28
1 9 7 5 2 —-0.39 2 —0.47 10 —-0.35
1 976 2.5 —0. 48 3 —0. 46 18 —0.20
1 977 2 —0.50 2.5 —0.55 -3 —0. 37
1 97 8 2.5 ~0.54 2.5 ~—0. 69 —-17 —0.17
1 979 2.5 —0. 38 2.5 -—0. 54 —11 —0.22
Average 2 ' —0.42 2.5 —0.50 1 —0.17

Fig. 6 shows cross-correlation functions aver-
aged during 1973 to 1979. Table 1 shows the
highest cross-correlations and the corresponding
time lags of each year. From the table we learn
that the low-passed series have higher correla-
tions than the original ones at about the same
time largs in every summer except in 1976,
but the high-passed series of each year do not
show any systematic correlation. Therefore,
we can conclude that only the low-frequency
component of alongshore wind leads that of
SST by 2 or 3 days every year. Without the
fltering technique, it might have been impossi-
ble to identify whether the correlation between
the alongshore wind and the SST was due
to high-frequency components or low frequency

ones.

DISCUSSION AND CONCLUSIONS

Convolution filters, which are simple to un-
derstand and easy to design, are likely to be
used in situations where computer time is not
a serious problem. Although symmytric convolu-
tions have no phase shift, they are physically
unrealizable, i.e., the procisses include “future”
signal. Thus a real-time convolution filtering is
impossible. On the other hand, recursive flters,
which are physically realizable and rapid in

computation, can be used even in real-time sig-

nal processing. But the recursive filter has a
disadvantage of accompanying phase shifts.
Although the cascaded recursive filterings can
remove that shortcoming, it cannot be used in
real-time operation. It is worth noting that
both recursive and convolution filters have about
the same flexibility in meeting various condi-
tions, and the optimum filter design can be de-
termined from the required conditions of fre-
quency responses. By computing the transfer
functions of various filter schemes, we can
choose the best one.

In many scientific fields, filtering operations
are usually prerequisite for data analysis. Filt-
ered results sometimes give us more clear phy-
sical insights. Based on the filtered results, for
example, we get a better understanding for the
upwelling phenomenon in the southeast coast
of Korea in summer as shown in the last sec-
tion. From the cross-correiation analysis for the
original, the low-passed and the high-passed
data, we recognized that the long period varia-
tion of the alongshore wind at Pusan and that
of the SST at Gampo are highly correlated with
each other at 2 or 3 days of time lags. The
running average method, although frequently
used in oceanography, is not suitable for a pre-
cise analysis because its frequency response is
poor.
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