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Extension of Guilloton’s Method for the Calculation of Wave-making
Resistance and Velocities at the Vicinity of a Ship Hull (Ist Report)

by

D. K. Lee*

Abstract

Guilloton’s wedge method is extended to evaluate velocity components on and around a ship

hull. A ship is divided into a number of layers each of which is approximated by the superposition

of so many wedges.

These wedges start from the stations evenly placed along the length of the ship. The Michell
potential is used to obtain the field generating properties of a wedge. The derivatives of this poten-

tial represent then the velocity components induced by the wedge. Superposition of velocities induced

at a fixed field point by all the wedges placed at the appropriate positions to approximate the hull

will result in the velocity associated with the ship at a particular speed.

Nomenclature
¢ : velocity potential
U

g . acceleration due to the gravity

. free stream velocity (i.e. speed of ship)

(z,%,2) . field point

(Zw, Yu, Zw) . wedge position

£ second difference of offsets
K : g/U? wave number
m . spacing between stations

n . spacing between waterlines
v . wi+wj+wk, disturbance velocity around the ship
D & Uwi+vejt+wok, velocity induced by a wedge
£,7,¢: wedge coordinate system, parallel to z,y, 2-
direction respectively ‘
L., wave elevation
1. Introduction

It is well known that Guilloton’s wedge method can

predict wave-making resistance of a ship with mod-

erate block coefficient to a degree of surprisingly
good accuracy (1,2). This relatively simple procedure
is in fact the only practical means of estimating the
resistance component when no high speed electronic
computer is available. Although the possibility of
theoretical prosperity might be limited in this line of
approach to the ship wave-making problem, compared
to that of highly versatile theoretical concept of sin-
gularities, the method still has inspired some investi-
gators (3,4) to analyse the problem under the light
of the method.

Its accuracy and simplicity of application have
motivated the present attempt to calculate the velocity
components of ideal fluid at the vicinity of a ship
hull within its frame. There are other methods (5, 6)
which can be used for this purpose but it has been
hoped that the wedge method could produce as good
results on the velocity components as it does on the
resistance component.

The prediction of velocity components around a
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ship hull is one of the deeply interested problems to
naval architects. It offers the important information
for ship appendage design and propeller performance
analysis as well as its design. However, in reality,
a ship hull

different from the one which might be obtainable

the velocity around is considerably
with the assumption of ideal fluid, due to the exis-
tence of boundary layer.

Hence the present investigation as it stands cannot
be applicable to a region where the effect of viscosity
is profound. Still, even for the calculation of three
dimensional boundary layer, the velocity distribution
of ideal fluid is prerequisite information from which
the calculation can proceed.

The accuracy of Guilloton’s wedge method comes
up after the so-called space transformation is per-
formed. This part of the method is, however, of
quite different nature from the other part ie. the
evaluation of velocity components. Therefore it has
been felt better to separate the present investigation
into two parts: the first, this report, is concerned with
providing the means of computing velocity components
while the other will deal with the way of determining

the hull shape to which the calculated result apply.

N 2U3 fg/Uz
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2. Coordinate System and Assumptions

The x-axis is directed forward and the z-axis is
chosen to be vertically downward. The y-axis is to-
ward starboard side to make the system right
hand one, the x-y plane being coincident with the
undisturbed free surface. The origin of the system
moving with the ship may conveniently be placed
amidship although this is not an absolute requirement.
This system is shown in Fig. 1.

" The assumptions are the same as those in Michell's
paper (7), that is, ideal fluid,

undulation, thin ship and etc.

small free surface
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Fig. 1 Coordinate System

3. Michell Potential in a Series Form

Guilloton took Michell potential (7) for a ship
and argued that the function representing hull slope
could be approximated by some form of double series
as shown below.

As the way of constructing this series, Guilloton
summed the slopes of semi-infinite wedges which were
so shaped and placed that superposition of their offsets
could closely approximate those of the ship hull at
question. More specifically, he broke the underwater
part of a hull into six horizontal layers each of which
was represented by linear combination of a number
of evenly placed wedges (8). The hull contour on a
waterline can be approximated to the accuracy of
quadratic curve.

Taking the double summation symbols out of the
integrals in eq. (1), it can easily be seen that the

velocity potential around a ship may be obtained by

—~—cosle(a—x)le” "”'““’dadﬂdadr

~1)dadpdo

=cos[g(a—x)]e YU 8 dad pdo )

the superposition of velocity potentials arised from

each member wedge.
4. Wedge Representation of a ship Hull

The underwater part of a hull is divided into a
small number of layers of equal thickness. Following
Guilloton (8),

It demonstrates how a vertical section can be made

six layers are considered in Fig. 2.
up by combining wedge sections.

The section at (g--1)th station is assumed to be
shown in this figure. The volume OAK represents

that part already filled up by the wedge system placed
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Fig. 2 Wedge Representation of a Section

up to (¢g—1)th station. The volume AKA’ is the part
that should be completed by the wedges to be located
at g-th station. It is quite easy to see that five full
wedges AB’C, BC’'D, CDVE, and etc., with their ver-
, bn and one half wedge AA’B

fulfi] this function very well.

tices at ==, 2n,...

5. Wedge Equations

The wedges to be placed at the bow and stern
These
wedges are called the sharp wedges. On the other
hand, to produce a smooth hull form, the wedges that

should have noses of mnonzero small angle.

will be positioned between the both ends must have
noses whose offsets increase gradually. These wedges
produced by adding parabolic part at the nose of
the sharp wedge are referred to as the rounded we-
dges. The both types of wedge are shown in Fig. 3.

The strength of a wedge is defiried by the tangent
of the angle (¢ in Fig. 3) between the wedge base

- h —j-»— t et

Fig. 3a Sharp Wedge

N yl— _'L‘_ P

Fig. 3b Rounded Wedge
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Af[ =df-bo=df-de=eT
Fig. 4 Wedge Construction

and the straight part of the vertex line. Table 1 shows
how the strengths of wedges to be distributed over
the entire ship length can be determined from the
hull offsets table. Fig. 4 reveals the meaning of the
wedge strength as how the hull offsets are filled by
successive location of wedges.

A wedge section in vertical plane can again be
decomposed into four element wedges of right-angled
triangular shape (Fig. 5).

In fact, right-angled triangular section is the fun-
damental wedge form and was used as the wedge in
Guilloton’s early works (9). Wedge of this form is
referred to as an elementary wedge. The offset of
an elementary wedge of which the baseline is located
at {=a can be given by

* rounded elementary wedge

Q I G In]

wedge ABD = AOD - KED - BEF + oca

Fig. 5 Decomposition of a Wedge Section into Four
Elementary Wedges
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Table 1 Calculation of Strength of the Wedges

St. | P e Wedge
No. jOffsets 1st Diff. 4 !‘an Diff. 42 Strength
0 7o A_o.5:770 Ag:Ao.s‘“d,o. 5 A%/m
1 7 dos=p1—n9 | Li=drs—do.s Bim
2 w2 | dvs=ne— ! A=ds—dis &/m
3 73 Mrs=n3—xs| L=dy.5— o5 £im
4 74 43‘5:774‘7?3
B aitWC‘; can be gnen by -
*rounded elementary wedge
Vg 2
Towa=— | 2 ey
—H(E—m/2))—H(—¢—m/2) |
((a—OH(a—D)J @
* sharp elementary wedge
A2 )
va,s:—‘;{n"é’H(‘“ﬁ) (a—-0H@—0) 3

In the above equations, H is Heaviside unit step
function. A wedge whose vertex line is located at

z=pn can be constructed by combining the above

* rounded wedge

D.K. Lee

6. Velocity Potentizl Induced by an
Elementary Wedge

Differentiating eq. (2) and eq. (3) with respect to
¢ and substituting the results into the Michell po-
tential, we obtain, after some algebraic manipulation,

the following expressions for the velocity potential

induced by an elementary wedge: (5) and (6).

7. Velocity Induced by Wedges

Expressions for the velocity components induced by
elementary wedges are obtained by differentiating eq.
(5) and eq. (6) with respect to &7 and {. These
expressions can directly be used to calculate velocity
components induced by half wedges located at the top
layer (wedge AA’B in Fig. 2). Expressions for a full
wedge are produced by combining these results as
Fig. 5 and eq. (4) imply. For instance, the velocity

induced by a wedge whose vertex is located at z=pn

£ UK? e-nde e sin(m/2) _o® . \/_1  cosar a
gew.e(§,7, ) =40 Tane f fo Jaite? o+ k2 (COSTC_ Kr Smﬂ’)( ¢ & K
sinar \ . 42 UK® (= otk dla | __,
+ &r )smaedzrdr—l-4—m- oo fx Py ( g Fe et — )cos[a(E
£ UK? pk pon/KVKi-az oa .
. K2 b - o2/ K[ 2 —c2a/K
¢a K )]sm 7 ds +4 P fo e ¢]?T~az e ( e

- 1)sin (@8)sin-"5"do

* sharp wedge
o-e‘n«/.72+r2

Pew,s(&, 9, 0)= 2—42‘ UKZ ff

9 ‘\/O'Z_I'TZ(UQ”LKZ 2)

cosar 42

)

. .
(cosri— —Iz;sian)( Sl}é‘;r __Ia<_ +T‘1T

-sineédodr -1-2

UK? - PR SL o’a .,
nx jfx 04~/02—K2< Kk T¢ “’K-l>cos[a\5

e*a’(/K

+-I”<— KB o+ —

the result is

expressions as suggested in Fig. 5. To be specific,

the result is
7= Tew) ez p+0 52 TeW) a=pn+ TEWda=(p-1) C)]

This expression will serve as the wedge equation.

42 UK?
fo A VK=t

o 2
e“a‘ﬂ/K ».’K’—az( ga

+e g K — 1>sin (68)de  (6)

will appear as follows:
Ow=(Uew)a= (100 — 20w ) azpnt+ WEW) a=(p-11a (7)
wherer
vew; velocity induced by elementary wedge

p ; integer representing waterlines(1,2, ----- )
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8. Velocity around a Hull and the
Isobar Elevation

The disturbance velocity at an arbitrary field point
can be calculated by superposing velocities induced
by all the wedges as the following equation shows:

v(r,y,z):§q2vwE(x—xp,q),y. (z~zp0) @

in which (xp,4,2,,4) indicates the location of each
wedge which may usually be, following the conven-
tion in ship lines plan, the coordinates of p-th water-
line and g-th station. The velocity observed from the
employed coordinate system is then given by
v(z,y, z)=Ui+tv(z,y,2) 9
The isobar elevation can then be estimated from
the z-component of the disturbance velocity as sti-
pulated in the linearised ship wave theory. If we

denote the isobar elevation by ., it is given by

Gy, D)=L u(z,5,2) 10)

The surface wave is particular case of this isobar

elevation and is obtained by eq. (10) with 2=0.

9. Programming

The offset at each junction of stations and water-
lines is used as the input data to form the hull shape.
Both stations and waterlines are assumed to be equally
spaced. The wedge base must be rectangular which
means that the usual curved bow and stern shape
cannot be accommodated. Improvements regarding
these points are required in the present programme
before it is to be used for practical purposes.

Theoretically, the more stations are employed, the

better accuracy is expected but practically, any reason-

able number around, say, twenty may be quite ade-
quate. Generally, for the slower speed, the more
stations are required to maintain the accuracy. Increase
of the number of stations is accompanied by the
penalty of computing time.

In Guilloton's papers(8,10), the underwater part
of a hull is to be divided into six layers. In addition,
it is required that the length of the ship is so
adjusted that U?/g is 2.5m. No such restriction and
requirement are imposed in the present progra-
mming. Any number of waterlines between three and
twentyone may be chosen. Again, in view of increase
of computing time number less then ten would be

sufficient.
10. Computed Results and Comparisons

Guilloton’s H-function has been calculated by the
present programme for a few cases and is shown in
Table 2. The table for this function has been prepared
by Guilloton(8) in such a way that extensive inter-
polation is required to obtain its values for any specific
cases. The agreement is very good. It is felt that this
agreement indicates the accuracy of Guilloton’s table
rather than that of the present calculation.

The wave profiles along the x—z plane, by a single
wedge are calculated for a few cases and shown in
Fig. 6. The profiles appear excellent satisfying the
radiation condition in the expected manner.

The Wigley model(11), Fig. 7, has been chosen
as the test case of the present method. This model is
particularly suitable for the wedge method because of
its geometry.

The four places, bow, fore-shoulder, aft-shoulder

and stern are the obvious positions where new wedges

Table 2 Comparison of the Values of the H-function

Case 1. Conditions;

wedge form ; full wedge wedge position ; z=0.5m

width of wedge ; N=0.5m level of field points ; z=0.5m

x o5 1o | 15 | 20 | 25 3.0
Guilloton’s Table 239 349 388 382 346 292
Present Method 241 339 382 379 346 297

KEERE L H21% 35 19844 9A
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sharp half wedge
Fig. 6 Wave Profiles Created by a Wedge

Journal of SNAK, Vol. 21, No.
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Case 2. Conditions;
wedge form ; full wedge wedge position ; 2=0.1m
width of wedge ; N=0.1m level of field points : z=0.2m
z | os [ 1o s | 20 Y
Guilloton’s Table | 204 414 465 | 460 391 311
{
Present method ‘ 306 433 485 | 460 393 315
Case 3. Conditions;
wedge form ; half wedge width of wedge ; N=0.1m
level of field points ; Z=0.0m
z ’ 05 | Lo } L5 2.0 ] 25 | 3.0
Guilloton’s Table 671 435 ! 290 221 176 140
Present method 651 430 292 219 174 139
t/(u2/q)
0.4
n/(u2/g) = 0.20
a/(U3/g) = 0.20 /\ 0.3
24(U%/g) = 0.00 \
/g =2.5n 0.2
92 /m = 1.0 \
/,f—‘a\ 0.1
//\\\-/ V4 N // -
\\_/ -0.1
L.0 -12.0 10.6  -8.0 8.0 15 2.0 5.0 Z.0 ¥.0 -0.2
-ik.0  -12. -10. . . x/ (v2/g)
sharp full wedge
n;%U:;gg = 0.28
af{U%/g) = 0.2 2
zé(Uzlg) = 0.ko ¢ /(U é?;
ul/g = 2,50 m :
ve/m = 1.0
0.1
4/"' ‘\\\7 ,//”—_\\\\\ 0.0
Lo 1270 ~16.0 8.0 =5.0 5.0 270 o. 7.0 %, -0.1
o The . x/(U2/g)
sharp full wedge
8/7(u2/q)
0.08
/(U2/g) = 0.0
:4(112/2) = 0.00 / 0.06
g Iy 0.04
// 0.02
] S~ ] ™. Vi 0.0
-0.02
-14,0  -12.0 -10.0  -8.0 -6.0 -4.0 -2.0 0.0 2.0

k.0
x/(U2/q)
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Fig. 7 Wigley Model and Its Wave Profiles
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are to be put. All the wedges are sharp ones with
their strengths
£2/m=0.75/5.81=0. 1291

identically. Eight layers in vertical direction have been
used in the calculation. The computed results for a
few Froude numbers are shown in the form of wave
profiles along the hull, projected to the center plane,
together with the measured profiles taken from the
reference {11]. The agreement is excellent. It can be
seen that the accuracy of the present method is better

with the higher Froude number.
11. Conclusions

It seems to be true that Guilloton’s wedge method
is superior to any other methods in connecting hull
geometry to its wave-making characteristics. Havelock
source method is excellent in wave-making property
but reflection of hull shape to the wave created by
the ship as a whole is almost impossible, if not tot-
ally. There is no reason why the proved accuray of
the method in predicting z-component of veloctiy
cannot be maintained in predicting other components
within the scope of ideal fluid, of course. Indeed, it
has been felt that the degree of reliability may be
quite safely anticipated in these regards.

1t is well known (1) that the accuracy of the wedge
method is achieved after the so-called space transfor-
mation (12) is introduced, this being not yet incor-
porated in the present method. Application to a
practical hull form with curved bow and stern profile
is not allowed at present. The second report regarding
these aspects is to be made in short time.

Notwithstanding the imperfections and limitations
of the present method at this stage, there seems to be
abundant possibility of achieving fruitful results in
this line of attacking the ship wave-making problems.
There certainly are many aspects which deserve
serious considerations from the ship hydrodynamicists.
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