Y 84-21-5-12 7

Implementation of an 8 — Channel Statistical Multiplexer
@-zld TAA oFsre +4)

AR, MBI, REEY, KEHEHY, soEt
(Jong Rak Lee, Dong Ho Cho, Chong Kwan Un, Kil Ho Song and Won Jae Cheong)

g ®

E rfoldE wlolaz 22 445 o| &4 8—channel A4 A ttF57] (SMUX) o] Fdol o) sho] 7)4
gk st dol= S100-bus #[423F bus& Edlo] oizdslel glow] 4MHz clockd Z -80A SotA e
Az 7l Zg ol RS g 16Kbyte LOM 713k data A A2 $18 16Kbyte 3 RAM 7]3b o) 47}
4 2AA 2 FA s AUrk o] EAA thEs 7]+ 50bpsoll 4 9600bps A Y dataE #HFE: 8 -
% s @ 4 Ax B4 EH JNE AAD AZEdolE 47t #4381 4~ channel
488 4 ook =g 2 vl CCITT A4 X.25 link level, V.24, V.28, X.3 % X.28% ut=
2 ok SMUX FLEAXL 4259 9J6HE 35 & ASCIL, EBCDIC, Baudot, Transcode & #HEF& 4
% A 715e 2 dded, AA AARE FHAI=d gz skt

Al 2

Wel o] % 4xEdolo] DY AAY AGe LT

Abstract

In this paper we present development of microprocessor-based 8-channel statistical multi-
plexer (SMUX). The hardware design includes one Z-80A CPU board with the clock rate of
4 MHz, one 16 Kbyte ROM board for program storage, one 16 Kbyte dynamic RAM board
and three I/0 boards, all connected through an S-100 compatible tristate bus. The SMUX can
presently multiplex 8 channels with data rates ranging 50 bps to 9600 bps, but can be reduced
to accommodate 4 channels by having a slight modification of software and removing one
terminal I/O board. The system specifications meet CCITT recommendations X.25 link level,
V.24, V.28, X.3 and X.28. Significant features of the SMUX are its capability of handling 4
input codes (ASCII, EBCDIC, Baudot, Transcode), the use of a dynamic buffer management
algorithm, a diagnostic facility, and the efficient use of a single CPU for all system operation,
Throughout the paper, detailed explanations are given as to how the hardware and software
of the SMUX system have been designed efficiently.

1. Introduction
*EGR, BEABHNEG BR % B LB

(Dept. of Elec. Eng., KAIST) To increase the information processing
*EER, &% REM PR capability and the utilization of a computer
(Institute of Technology, Gold Star Electric Co., facility, computational resources of remotely
Ltd.) located computers and/or terminals must

2R 1984% 28 29H be shared via an interconnected computer

80

communication network. In implementing such
a network, the communication system design
influences the overall system performance
and the system costs. To reduce the com-
munication cost, a multiplexing technique is
normally used. Frequency division multi-
plexing (FDM) and synchronous time division
multiplexing (STDM) are two commonly
used techniques in conventional data com-
munication systems. FDM divides a channel
bandwidth into several subchannels such
that the bandwidth of each subchannel is
at least as great as that required for a single
message channel. On the other hand, in STDM
each user is assigned a fixed time duration
or a time slot on the communication channel.
The multiplexing apparatus scans the set of
users in a cyclic fashion. After one user’s
time duration has elapsed, the server is switched
In both FDM and STDM
systems, addressing is usually not required,

to another user.

since the user is identified by his frequency
portion in FDM, or by his time slot position
in STDM.

It is known that FDM does not make effici-
ent use of channel bandwidth because of the
need to employ a guard band to prevent a
data signal of the channel from interfering
adjacent channels and because of the relatively
poor data transmission characteristics of the
voice band channel near the edges of its band.
Although STDM is considered to be more
efficient than conventional FDM systems,
the STDM technique also has certain disad-
vantages. Statistical data collected from se-
veral typical operating time sharing systems
have shown that the system is in an idle state
for a large amount of time, and actually sends
information only for a small fraction of time,
Thus, the conventional STDM technique is
inefficient in channel utilization in such an
environment, since it allocates a time slot
to each user whether or not the user is active.

To utilize the channel bandwidth more
efficiently, the asynchronous time division
multiplexing (ATDM) technique, which is
also called statistical multiplexing, has been

1984% 98 WTIBEHE HF 21 % FH 5%

proposed for computer communication. In
statistical multiplexing, data are asynchro-
nously multiplexed with respect to the users.
When a user has a message to transmit, he
is granted access to the channel. If a user
has no message to transmit, it becomes dis-
connected from service. Statistical multi-
plexing requires an address for each transmitted
message and buffering to handle statistical
peaks in random message arrivals. Hence,
SMUX is more complex as compared with
the STDM system, but can yield a large gain
in channel utilization."'

This paper deals with implementation of
an 8-channel statistica]l multiplexer (SMUX).
The system specifications meet completely
CCITT recommendations X.25 link level,
V.24, v.28, X3 and X.28. Both hardware
design and firmware implementation will
be described in detail,

Following this introduction, in Section
I we describe the overall system configura-
tion and the system main features. The hard-
ware architecture is explained in detail in
Section III. In Section IV software imple-
mentation is described. Finally, conclusions

will be made in Section V.
II. Description of Overall System Configuration

The system operation of statistical mul-
tiplexers is illustrated in Fig. 1. The output
data of 4 or 8 asynchronous terminals are
multiplexed, and transmitted through the
channel with or without modems. Then,
received data frames are demultiplexed and
distributed to each corresponding terminal,
The data in reverse direction are processed
and transmitted in the same way.

SMUX @ Statistical Multiplexer
c : Computer
T : Terminal

Fig. 1. An example of SMUX operations.

Implementation of an 8 — Channel Statistical Multiplexer 81

At the transmitter, the input data rate of
each channel can be varied from 50 to 9600
bps by appropriate switch settings. Input
data are stored in an input line buffer, and
echo-back is serviced to the terminal by the
SMUX for each character satisfying CCITT-
recommended protocols, X.3 and X.28[2}.
When the line buffer is full, or the timer
runs out, the stored data frame in the line
buffer is transferred to the main buffer. A
dynamic buffer management algorithm is
used to allocate memory to each frame, If
the input traffic is high and buffer overfiow
is to occur, the input data are temporarily
stored in the input waiting buffer to protect
data loss. Then, each channel is notified
that the buffer is almost full. Also, it is
checked which channel has been down. If
any channel is down, the system is recovered by
releasing the corresponding data frames. The
data frame stored in the main buffer is serviced
on the firstin first-out (FIFO) basis, and
transmitted synchronously through the mo-
dem, The speed of the modem can be varied
from 1200 to 9600 bps according to the input
traffic and error condition of the transmission
line. In the SMUX system, error-free transmis-
sion, sequence control and flow control are
supported by X.25 data link protocol. Ac-
cordingly, an output waiting buffer is needed
for retransmission,

At the receiver, the received frame is chec-
ked and processed by the X.25 link routine,
If it is a valid data frame, it is stored in the
main buffer. In case of transmission errors,
retransmission is requested by informing the
transmitter that the received frame has been
rejected. The stored data frame in the main
buffer is serviced on the FIFO basis, and passed
to the packet assembly and disassembly (PAD)
part to be sent to the corresponding terminal,

The main features of the SMUX described
above include its canability of handling various
input codes, error-free transmission, down-line
programming, front panel diagnostics, channel
speed control, channel rate adjustment, dyna-
mic buffer management, aggregate/input inter-
face compatible with CCITT recommenda-

tions V.24 and V.28[3) and so forth. Detailed

specifications are summarized in Table 1.

Table I. Main features of SMUX system,

Number of channelsto {4o0r8

be multiplexed.
Synchronization of data
Input data code

Asynchronous
ASCII, Baudot,
EBCDIC, Transcode
50,75,110, 1345,
150, 200, 300, 600,
1200, 1800, 2400,
4800, 9600 bps

5-8 bits

1200, 1800, 2400,
3600, 4800, 7200,
9600 bps

EIA RS232C (CCITT

Transmission speed of
input data

Number of data bits
Aggregate speed

Aggregate/input inter-

face ‘ V.24/V.28)
Protocol X.25 (link level)
X.3,X.28

Error detection 16 bit CRC
Error correction ARQ
Operating mode Point to point (full

duplex)
Buffer size 16 Kbytes
Program size 16 Kbytes
Buffer management Dynamic manage-
ment

The rystem can handle a total input/output
data rate up to 20 kbits/s when the CPU
operates at the clock rate of 4 MHz. It can
support eight users simultaneously that trans-
mit data at an average rate of 1200 bits/s
each. The system can have greater data proces-
sing capability if the CPU clock of a higher
rate is used. However, the transmission speed
of each user will be limited without regard to
the system performance capability when the
error rate on the synchronous aggregate lines
becomes high.

III. Hardware Design and Implementation
The SMUX system hardware consists of a

central processing unit (CUP) board, a read-
only program memory board, a read/write

82

random access memory (RAM) board, and
three (or two when reduced) input-output
(I/O) boards.
the configuration of a general microcomputer

Since the hardware constitutes

system, our description will be concentrated
on the specially designed I/O boards. Only
a brief explanation will be given for other parts
of the system.

The CPU board uses a Z-80A microproces-
sor chip that operates under a 4 MHz system
clock. During the development phase we used
an S-100 compatible bus, but, at the end of
development, we replaced it with a Z-80

system bus. The ROM board uses I Kbyte/

chip erasable-programmable ROM (EPROM)
chips, which add up to 16 Kbyte capacity.
Also, a 16 Kbyte dynamic RAM board is used,
The memory capacity can be expanded by
adding the same RAM boards.

+
LR CICNALS (3l dr, 2L B2, FTIRLL LOEIBLL 1w, P, HE R

Fig. 2. Hardware block diagram of the main
1/0 board.

There are two kinds of I/O boards in the
SMUX system, referred to as the main 1/O
board and the terminal I/O board, respectively.
Fig. 2 shows the hardware block diagram of
the main I/O board. As shown in the diagram,
there is a modem port that is used to transmit
the multiplexed (or aggregate) synchronous
output and to receive the synchronous input
data which is to be demultiplexed, and two
One of
these switches, SW1, specifies the transmission

dual-in-line package (DIP) switches.

speed of the synchronous aggregated line with
an optional external clock received from the

19849 9H EfUBELE F21%E FS5H

remote equipment. The operator of the statisti-
cal multiplexer can raise or lower the line
speed according to the condition of the current
aggregate channel.

The other switch, SW2, defines some other
functions. The most important one is the
function of master/slave selection, which deter-
mines the multiplexer to act as a master equip-
ment or as a slave. The master and the slave
act differently at their initial handshaking
phase. Initially, both run modem control
routines. After physical interconnection, they
open a full-duplex data link by transmitting
supervisory command frames. If the link is
successfully set up, and down-line loading has
been enabled by SW2 at the master, then down-
line-loading is done. And the master reads its
switch settings and various internal parameters,
and sends them through the link, When the
slave receives them, it writes the information
on its latches prepared for each switch. At the
slave, the switch settings are completely ig-
nored. But, a part of the switch settings of
its own may also be saved in the latches. For
such purposes, the CPU must be able to read
the switch settings and the contents of the
latches, and load the latches with hardware
control information. Either the switch settings
or the latch contents are loaded on the data
bus. The choice between the switch and the
latch is determined by a signal called SWITCH/
LATCH, which is also stored in another latch.
Some signals thus selected are used to control
the other parts of the hardware directly. The
master/slave function and the down-line loading
are necessary for diagnostics that is initiated
On the main I/O board are
displays that inform the operator of the overall

by the master.

system status. There are six light-emitting
diodes (LED’s) that display the latch infor-
mation, and three LED’s that display the
status of the aggregate lines, driven by the
hardware signals.

In addition, the main I/O board has a
circuit that generates the clock signals of
various frequencies to be used by its own or
by other I/O boards. Of these, seven signals

A6 Wy

Implementation of an 8 — Channel Statstical Multiplexer 83

of 1.2, 18,24, 36, 48, 7.2, and 9.6 kHz
are used as the transmit clock signals, while
the other seven in other I/O boards are used
to control asynchronous timing for user ter-
Also, a 400 Hz clock signal is made
available for use in other [/O boards as a

minals,

basic timing unit for counter/timer circuits
(CTC’s).

The SIO chip plays the most important
role in the main 1/O board. It sends to and
receives from the modem the serial data,
converts them into 8-bit paraliel data to be
used by CPU, performs cyclic redundancy
check (CRC), and so forth. Also, between
SIO and the modem port is an RS232C inter-
face circuit that converts voltage levels,

Cree 1

Fig. 3. Hardware block diagram of the terminal

1/0 board.

The block diagram of the terminal I/O
board is shown in Fig, 3. Up to four start-
stop mode terminals can be connected to this
[/O board as stated above. A DART can
handle two terminals with one having higher
priority than the other, and two DART’s are
connected in a Z-80 ‘‘daisy chain” interrput
circuit. As a result, the four asynchronous
channels have relative priorities among them.
An RS232C

voltage levels and also a current loop circuit

interface circuit that converts

for teletypes are used betwezen each terminal
port and the DART. The DART converts
serial asynchronous data into 8-bit parallel
ones so that the CPU can handle them. Seven
different clock signals supplied by the main

1/O board are available for each channel. The

frequency of the cloc< signal used is deter-

mined by the binary :peed of that channel,

and is divided by 16, 32, or 64 for use inter-
nally in the chip.

For each chanii.: of the terminal I/O board,
there is a DIP switch whose functions are local
to that channel. They are the channel trans-
mission rate, number of the data bits used and
the number of stop and parity bits for transmis-
sion. With these switches there are eight
LED’s that are driven by h:.:dware signals,
which display the activity of
each channel. Timing inter:i~t is initiated
by two CTC’s, which are used in the counter
mode with their basic timing interval of 2.5 ms
(400 Hz). Each CTC chip contains four coun-

input-outpu

ter circuits, which can, therefore, handle two

channels simultaneously. Two counters are
cascaded externally for one channel, and can
count as long as about 2.7 minutes. Since
three kinds of timeouts are used in this multi-
plexing equipment, a timer has to be managed
dynamically.

Z-80A peripheral devices are interconnected
in a daisy chain interrupt structure, where
the delay due to each device is accumulated
with increase in the number of devices and
result in malfunctioning if it is more than four.
This problem was overcome by using an inter-
rupt lookahead logic circuit on each 1O board.
By modifying jumper connections, the look-
ahead circuits are appropriately interconnected
when one adds another terminal I/O board.

1V. Software Design and Implementation

The SMUX firmware which was developed
using Z-80 assembly lauguage can be divided
into four parts according to their operation;
an initialization routine, a polling service
routine that includes the input and output
process of dynamic buffer management, an
idle routine,
composed of SIO and DART interrupt ser-
vice routines, A flowchart showing the inter-
relationship among these routines is given in

and interrupt service routines

84
Fig. 4. In what follows these routines are
discussed.

START
INITIALIZATION

Tx LINK 1

OO

POLLING SERVICE

EXT
REQUESTED?

A=

SPRx LINK —T

POLLING

SERVICE PAD COMMAND
ROUTINE ANALYSIS AND

SERVICE
Tx
Thr? YES
- DART

ECHO SERVICE r——

SPRx

L]

Fig. 4. Block diagram of SMUX firmware.

1. Initialization

Before starting actual operation, the SMUX
must be initialized, The system memory is
cleared and initial values of the parameters
are loaded. Also, the SIO function of link
level is initialized, which includes handshaking
with a modem that is connected to the SMUX,
Also, initialization of DART’s for servicing
terminal equipments and CTC’s for timer
operation follows. In this initialization process
the information regarding SMUX system
operation is read from the front panel switches,
and CPU initialization such as interrupt mode
selection, stack pointer setting and so on is
made.

2. Polling Service Routines

These routines consist of the input line
buffer (ILB), output line buffer (OLB) service
routines, and the routines of the buffer manage-
ment input process and output process.

1984 9H BFLREE £ 21 % ¥ 55

When ILB services are requested, the reques-
ting channels are processed in turn. The data
frame is transferred from the input line buffer
to the main buffer. That is, the input process
of dynamic buffer management is executed.
If the size of the input line buffer content is
longer than 80 bytes, the extra bytes are
After the ILB is forwarded, the
corresponding ILB request is reset,

rearranged.

The input process of dynamic buffer man-
agement is performed according to the modi-
fied Chu’s algorithm!4]. The flowchart of the
implemented input process is shown in Fig. 5.
The input process collects addressed input
data frames and allocates them to the main
buffer efficiently.

If an input process is requested, a block
available list (BAL) which ¢ contains the
addresses of available space is investigated.
If not available, the received frame is tem-
porarily stored in an input waiting buffer,
or all the data frames of the corresponding
channel are released according to the situation.
When there exists any available buffer space,
it is examined whether buffer overflow has
been informed of. In the case that a data
frame is stored in the input waiting buffer,
it will be serviced now. Requested data frames
are serviced according to the frame addresses,
the address translation table (ATT) which
has the first block address (FBA), the last
block address (LBA), and a buffer status bit
(BSB) for each channel. The buffer status
bit indicates that there is at least one stored
data frame for that channel in the main buffer.
When the main buffer contains a frame for a
specified channel, the linkage pointer is
updated to point to the physical address of
the first byte of the newly arrived data frame,
and the block containuation bit is updated.
And then, the last block address of the ATT
is then, the last block address of the ATT
is updated to the available memory address
obtained from the (BAL).

In the case that there is no data frame for
that channel, the FBA of the ATT is updated
to the value of available memory address

Implementation of an 8-Channel Statistical Multiplexer 85

obtained from the BAL, and the block status
bit is set to 1. Next, the data frame is proces-
sed to be stored into the main buffer from
the ILB.
monitor.

On the other hand, in the case that output
line buffer (OLB) services are requested, the
corresponding channels will be serviced in

The control now returns to the

turn, When the data frame of the channel is
in the main buffer, it is moved to the output
line buffer., That is, the output process of
dynamic buffer management is done. Then,
the corresponding OLB service request is reset.

The output process of dynamic buffer
management is performed according to the
modified Chu’s algorithm[4}. The detailed
implmentation of output process is shown in
Fig. 6. The output process efficiently dis-
tributes the data in the main buffer to the
corresponding destinations,

When the process is requested, the data
frame is transferred from the main buffer to
the destination buffer, and the BAL is updated

INPUT PROCESS

INPUT
WAITING BUFFER
FULL?

RELEASE 8LL CF
THE CNRRESPONN..
INR VESSAGE .

SERVICE THE DATA IN THE
INPIT WAITING BUFFER,

i

STARE THE RE-
OUEST It THE
TMPUT WAITING
BUFFLR.

1S THERE
THE CORRESPONDING
DATA?

LINYAGE POIMTER UPPATING

UPGATE THE LBA OF ATT

RLOCK_CONTINUATINN
BIT UPDATING

ATT UPDATIPC
FBA OF ATT=AM4 OF BAL

fp—

TRA®SFER DATA FROM ILB
T AVAILABLS MEMARY

RETLRN

Fig. 5. Flowchart of butter management input
process.

by the FBA of the ATT. Following this, if
the data frame continues the next frame, the
FBA is updated by the linkage pointer which
indicates the first byte address of the next
frame. Then, the control returns to the mo-
nitor as before, If the serviced data frame is
the last one, the values of the block status bit,
LBA and FBA are reset, and the control re-
turns.

In the case that the input process of dyna-
mic buffer management is desired by the SIO
special receive interrupt service routine, the
task is done in almost the same way as shown
in Fig. 5. When the output process of buffer
management is requested by the SIO transmit-
ter interrupt service routine the function is
processed as shown in Fig. 6.

3. ldle Routine

The idle routine shown in the overall flow-
chart of Fig. 4 does nothing but checking and
servicing interrupt and service routines,

BUFFER MAMACEMEMT
OUTPUT PROCESS

TRANSFER DATA FROM THE MAIN BUFFER
TQ THE OUTPUT LIKE BUFFER

L UPDATE BAL BY FBA OF ATT l

FBA, LBA, AND YES
ELOCK STATUS BIT
ARE RESET

UPDATE FBA OF ATT

BY LINKAGE POINTER

{ RETURN ,

Fig. 6. Flowchart of buffer management output
process.

86

4. Interrupt Service Routines

Theie are eight interrupt service routines
which are related with synchronous and asyn-
The dybamic buffer
management and X.25 link level process are

chron. us transmission.

included in the interrupt service routine. that
handle communication using Z-80A SIO.
Also, the packet assembly/disassembly (PAD)
function compatible with CCITT recommenda-
tions X.3 and X.28 is processed in the interrupt
service routines handling Z-80A DART. Each
interrupt service routine of synchronous and
asynchronous transmission consists of trans-
mitte interrupt, receive interrupt, external
status interrupt, and special receive interrupt
routines. In what follows, we first describe
Z-80A SIO interrupt service routines related
with X.25 link level process, and then explain
Z-80A DART interrupt
related with PAD functions,
1) X. 25 link level routines
The X-25 link level process can be classified
into transmitter and receiver routines as shown

handling routines

in Fig. 7. The receiver routine includes the

receiver, the high-level data link control (HD-
LC) receiver and the secondary routine. Also,

DATA OR COMMAND DATA

SECONDARY J

1 PRIMARY

SENDER RECEIVER

sio S19

TRANSMITTER RECEIVER

s10
HARDWARE

Fig. 7. Block diagram of X.25 link level.

1984% 98 ETFLE®! H 2 & H5 5%

the transmitter routine is composed of the
sender, the HDLC transmitter, and the primary
routine.

Let us discuss first the functions of the
receiver routine. In the HDLC receiver routine,
characters are received from the HDLC hard-
ware through SIO receive interrupts. This
function is the same as that of the SIO routine
interrupt routine, and as a result, it is hardare-
dependent,. When an SIO special receive
interrupt occurs, the valid received frame is
serviced by the receiver routine. The routine
that will process the received frame is decided
according to the frame type by the receiver
routine, Command or data frames are serviced
in the secondary routine, and response frames
are handled in the primary and the sender
routine, The secondary routine processes the
incoming data or commands, Also, in the
case of global changes, the message of the
secondary routine is transferred to the primary
routine. If the received frame is a valid infor-
mation frame, the buffer management input
process is requested. This process is similar
to Fig. 5.
frame is not valid, retransmissior is requested.

When the received information

Besides, the response frame corresponding
to the command is processed in the secondary
routine, and this frame is serviced in turn in
the sender routine,

In the primary routine, either the outgoing
data or commands to be transmitted or the
response frames received from the receiver
routine are processed. Next, they are passed
to the sender routine. Some of the parameters
used in the primary routine, which controls
the secondary, are shared with the secondary
routine, The control byte in the data, com-
mand or response frame from the primary
or secondary routine is decided in the sender
routine, In addition, the related parameters
are updated there. By the HDLC transmitter
routine, the completed frame is transmitted
to the HDLC hardware character by character
through SIO transmitter interrupts. The func-
tion of this routine is almost the same as
that of the SIO transmit interrupts.service

Implementation of an 8-Channel Statistical Multiplexer 87

routine mentioned earlier. One can note
that this routine is also hardware-dependent.
The transmitted frame is not instantly released.
Instead, it is stored in the output waiting buffer
until it is acknowledged. The maximum
number of the information frames to be
acknowledgedged cannot be greater than
seven, If the frame to be transmitted at this
instant is a new information frame, the output
process of buffer management is requested.
Then, the services of the primary and the
sender routine are required.

In the CCITT recommendation X.25 link
level, the state diagram or state transition
table is not given. On the other hand, the
state transition table is described in the BX.235
link level protocol proposed by Bell Labora-
tories!®1. This BX.25 link level protocol is
compatible with CCITT X.25 link level proto-
col. For this reason we have followed the
BX. 25 link level protocol in implementing
the X.25 link level process. In the SMUX
system, all the command and data sequences
of 16 states except for servicing the poll/
final function have been considered.

2) PAD routines

A brief diagram of the overall PAD architec-
ture is shown in Fig. 8, Each channel has six
buffers-- an input line buffer (ILB), an output
line buffer (OLB), a PAD command buffer,
a PAD service buffer and an echo buffer.
Although these buffers are assigned one for
each channel, respectively, they are used by
the routines that are shared by all channels.

There are many routines in the PAD as
shown in Fig, 8, ANALYS alalyzes the PAD
command signals, and converts the IAS (In-

COMMAND BUFFES,
SERV

n v R SUFFER

TERMINAL

Fig. 8. Butters and routines in the PAD.

v
Y i AGEMEN

ternational Alphabet No.5) — formatted
into an internal message code, according to
which SERV takes a necessary action, and
sends the PAD service signal to the service
buffer if necessary. LINK is responsible for
physical level connection, and controls asyn-
chronous modem signals. After the physical
link has been set up, the PAD can receive
characters from the terminal. When a character
arrives at the asynchronous receiver/transmitter
(ART) hardware, an interrupt is generated,
which activates ARTRX. ARTRX fetches
the character in the ART hardware, and stores
it in the ILB or the command buffer according
to the present state. If a character code other
than [AS is being used, the format of that
character is converted into IA5 by CONVRX
EX3 then
acts on the received character, and checks
whether it is one that corresponds to the PAD
parameters. The checklist is used when EX3
takes action on the received character stored

while being stored in the buffer.

in the buffer by calling service subroutines
such as ECHOIN, EDIT, and others, ECHOIN
stores the character in the echo buffer,

EDIT is used when the terminal user wants
to edit one line of data or command before
forwarding or execution. Editing is done pro-
perly on the ILB or the command buffer.
If the ILB becomes full or any other forwarding
condition occurs, FORWARD informs the
monitor that the content of the buffer should
be transferred to the main buffer as a frame.

ARTTX is an ART transmit interrupt
service routine, which calls EX3 to service the
character to be transmitted from the OLB,
the service buffer or the echo buffer. The
echo buffer has top priority in transmission.
The characters in the OLB are fetched by
OLBOUT. When the OLB becomes empty,
FETCH informs the monitor that the buffer
should be loaded with a new frame,

CONVTX converts the character that is
about to be transmitted if a code other than
1AS (ASCII) is being used. ECHOOUT, which
is called by EX3, fetches a character from
the echo buffer. INITART and INITPAD

88

initialize the ART hardware and the PAD
routines, respectively. EX28, which is a state
machine that is invoked at every occurrence
of an event, maintains and keeps track of the
state between the terminal and the PAD.
The event code is usually generated as a result
of executing routines such as EX3, SERV or
buffer management routines. This event,
together with the present state, determines
the next state to get into and the sequence of
tasks to be done. At the end of the tasks,
the present state is updated by a new state.
Therefore, EX28 can be considered to be an
important part of the PAD in that all actions
should be taken in accordance with the
sequence indicated by EX28.

Since the SMUX is a point-to-point com-
munication equipment, all functions that are
related with networking or virtual calls have
been excluded in our implementation. In

Table II. PAD parameter values implemented

in SMUX.
Erameter Selectable
reference Function
number values
1 PAD recall character {0, 1
2 Echo 0,1
3 Data forwarding signal| O, 2
4 Idle timer delay 0, 1-255
S Ancillary device 0,1
control
6 PAD service signals 0,1,4
7 Operation on a break |0, 8, 18
signal
9 Padding after a 0-7
carriage return
10 Line folding 0, 1-255
12 Flow control of the 0,1
PAD
13 Line feed insertion 0,1,2,4,
after a carriage return {3, 7
14 Padding after a line 0-7
feed
15 Editing 0,1
16 Character delete 0-127
17 Line delete 0-127
18 Line display 0-127

1984% 98 BT LEEE F 2% F5H

the SMUX system, all the PAD parameters
defined by CCITT X.3 except for 8 (discard
output) and 11 (line speed selection) have
been implemented. The PAD parameter values
implemented in the SMUX are shown in Table
II.

V. Conclusions

We have presented implementation of a
microprocessor-based statistical multiplexer
with particular emphasis on firmware develop-
ment of the system. With efficient design of
hardware and software, it was possible to
realize the system that is capable of multiplex-
ing 8 asynchronous channels simultaneously
with a single Z-80A microprocessor. The
SMUX system is mostly digital and software
controlled, Z-80A DART and SIO have been
used for the asynchronous and synchronous
communications. Also, for efficient storage
management, a dynamic buffer management
algorithm is used. The developed software
has been designed to be compatible with CCITT
recommendations X.3, X.28 and X.25 link
level. We believe that our system design pre-
sented is efficient, economical and unique in
a sense.

To improve the performance of the SMUX,
the use of a multiprocessor scheme can be
considered for system modularity and expan-
dability.
(DMA) to support synchronous communication
and WD2511 LSI chip for X.25 link level
process may be used to improve the SMUX

Also, the direct memory access

system. Then, the SMUX can be used as a
network concentrator in a public packet
switching data network.

References

[1] N. Abramson and F.F. Kuo, Computer
Communication Networks. Prentice-Hall,
Inc.,, Englewood Cliffs, New Jersey,
1973.

[2] CCITT Recommendations X.3, X.25 and

Implementation of an 8-Channel Statistical Multiplexer

(4]

X.28. Volume VIlI-Fascicle VIII. 2,
VIIth Plenary Assembly, Geneva, Nov.,
1980.

CCITT Recommendations V.24 and
V.28. Volume VIII-Fascicle VIII.1, VIIth
Plenary Assembly, Geneva, Nov,1980.

W.W. Chu, Dynamic Buffer Management

(51

89

for Computer Communications. Proce -
edings of the Third Data Communication
Symposium, pp.68-72, Nov., 1973,

Operations Systems Network Com-
munications Protocol
BX.25, Issue 3, Director - Purchased

Products, June, 1982.

Specification.

