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Nomenclature me—m—m—m—e— T :Normal force acting along tangent to a circu-

: Area of cross section of a ring mference of a ring

: Young's modulus t : Time coordinate
: Modulus of shear u  : Radial displacement

g

: Tangential displacement

: Moment of intertia of mass of the ring
* : Form factor

A

E

G

I : Moment of inertia of cross sectional area
J Greek letters
K

6 : Angular coordinate
: Moment of force £  :Natural circular frequency of ring vibration
m_: Mass of a ring per unit length m=pA/g ¢ :Deformation angle due to bending
N :She?r force ) B : Deformation angle due to shear
ro Ra(%la] coordinate ) ¢ : Total deformation angle
S : Axial force due to radial prestress o :Density of ring material
Scr : Critical buckling force
1. Introduction
*Member, Doctoral Condidate Dept. of Mech. Eng.
Han Yang Univ. The buckling of the structural elements has

«+Member, Dept. of Precision Mech. Eng. Han Yang long been studied based on strength of materials
Univ. view point.



Determination of the Critical Buckling Load of a Circular Ring by the Dynamical Aspect 605

Many Scholars contributed in this field of
study especially on beams, columns, shells,
plates, and circular ring.

During last 20 years, the new approach of
the problem was initiated by a group of scho-
lars led by V.V. Bolotin.

This new approach utilizes basically the con-
cept of nonconservative type of force formula-
tion into the dynamical governing equation and
treats the problem of buckling as an extreme
case of dynamic motion.

However, the most of the non-conservative
force? analysis of the structural elements were
concentrated either on column or beam, we
have applied the analysis to the circular ring
under axial prestressing force. The classical
dynamic analysis on free vibration of circular
ring is introduced by Love®. Many studies
were made to improve and supplement this
classical dynamic analysis.

L.L. phillipson® considered extensional effect
of the ring cross section center line, Kirkhope™®
considered shear deformation effect, K.S. KIM®
considered rotatory intertia effect, R.R. Arch-
er® considered damping effect, C.W. Bert
considered rotating ring®™ and S.S. Rao®
considered rotatory intertia and shear and shear
deformation.

However, the effect of prestressing in the
free vibration of a circular ring was never
considered before.

In this dynamic analysis, we have taken into
account of the effects of the translational inertia,
the rotatory inertia, and the shear deformation
effect separately.

Through the tree separate sets of analysis,
we have shown how each effect influence the
vibrational frequencies of the circular ring
under prestressing condition, and as an extreme
condition, we have derived the formula for the
buckling load for a circular ring.

One of the practical example of the ring
under axial prestress condition is the force fitted
ring component.

The result of this study are justified through
the comparison with the result of classical
analysis by Timoshenko® who studied this
problem based on strength of materials view
point.

While the approach by Timoshenko was
basically a statical, he did not need to consider
the effects of the inertia terms which we
considered together with shear deformation
effect in the determination of critical buckling
load.

2. Analysis 1

For analysis on the free in-plane flexural
vibrations of a thin, elastic and circular ring,
we utilize the equations of motion derived by
Love® and consider only the translational
inertia.

In Fig. 1 we have shown an element of ring
with symmetrical cross section of unit length
with differential angle df and radius R.

Fig, 1 Ring element

From the above mentioned relation, Rdf=1
holds in Fig. 1.

The radial direction(z¢ direction) equation of
motion becomes in the case of compression,

— N (N4 a0)+ {79+ L-(T-)
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o*u
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Dividing by R d6, we obtain
oN 0*u
F T+ G5 J=m M
where m=pA/g, the mass per unit length of
the ring. On the other hand, the tangential

do }dﬁ—mR o2z

direction(w direction) equation of motion beco-

mes,

0

—(T=8)+{(T—$) +—55-(T=S) as)
oN _ o*w
—(N+76,— d@) dg=mR do-%12-

Dividing by R df, we obtain

0 0?

—+ [ (T-)=N|=m5p; . @
The moment equation becomes moment equili-
brium equation in this analysis as we neglect

rotatnry inertia.

(-2 2 at)+ (N+—a% )R =0

Dividing by df, we obtain

oM
iz

From the strength of materials theory, moment
and deformation have following relation with

L2 L NR=9 3

compressive prestressing force of S,

—Sut+M=EL ( 55 +u> @

Utilizing the geometric relation of deforming
ring central cross sectional line®®, the elongation

of ring central cross sectional line becomes,
—ud ﬁ-i—
Rd0=1,

do=J, o= (-
Assuming e=(, Wwe obtain the inextensional

dﬁ using the relation
aw
w3

condition as follows.

2 )

U=

Substituting M from Eq. (4) into Eq. (3) and

solving for NN,we obtain

N=—

2
& 35Uz (3 )} -sw)
(6
Substituting this N into Eq. (2) and substituting
T from Eq. (1), into Eq. (2) and changing #
into %L;)— using Eq. (5), the resulting equation
of motion becomes,

o%w 3w 2w RS 02
565 T2 56w " aer T TET a6

o*w _ mR* p? 0*w
(G +w) =" 5 (v—ggr) @
By Byerly method, weas sumed solution as,

w:woei(n9+9t) (74:2, 3, 4, ,,.) (8)
And we obtained following natural frequency

Jre (S +1)}

relation.

nz{n“—( ]2}9

= 2R (e ©
oo [ EIEGe-1: _ RSEGE—1) 17
T mR(1+nd) mR(1+n?)
a0

The first term of inside of (9) is the classical
solution while the second term shows the effect
of prestress. When ©=(, this represents the
buckling condition as shown by Timoshenko
and Gere®,

From equation (1), set
Eln*(n*—1)* _ R*Sn*(n*—1)
mR4(1+n2) mB(14-n%)

EIn—1)
-

Secr= ¢

For the lowest mode #=2, we obtain the cri-

tical value of the compressive force as

3EI

Scr= ~pr a2

This value is the same as the one obtained by
Timoshenko. The equation (10) also shows the
so called fluttering natural frequencies of a
circular ring under non-conservative type of
radial loading S.
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2.1. Analysis 2

In this analysis a ring under axial compres-
sion with consideration to both translational and
rotatory inertia is analysed.

In this way we can see the effect of rotatory
inertia more clearly in comparison to the clas-
sical love theory. The sets of governing equa-
tions are similar from previous analysis ex-
cept rotatory inertia term in Eq. (14). The
governing equations are as follows.

2
)
1 [ a(T—S)  w
T{ 20 'N}‘m T (14
2
%—M+NR=]%Z— 15)
2.
—Su+M:%<-§7”f—+u> (16)

From the inextensional condition
ow

W‘—M (17)
We obtain the equation of motion under non-
conservative follower force S, which is compr-
essive axial force acting at the cross section of
ring differential element of unit length.

*w ow | 9w , RS 2 | O*w
2 g e (W 7 )
_mRt & (  ow )
T EI o\ 002

JR* 8¢ / o'w 02w
TUET o ( 261 2 502 +w>
(18)

Assuming
wzwoei(n0+ﬂt)
We obtained following relation.

ITEPTOR 5 IV
n*(nt—1) 7 n*(n*—1)

=mT134(1+n2)92+ gf, =120 (19)

_ EIMZ(MZ—I)Z—RZSMZO'ZZ—D 172
Q~{ mRA(1+n?) + JR(W*—1)° } €

If we set @=0, we obtain critical buckling load
Scr as follows.

2 __
Scnzﬂ%z;) (21)
For n=2, the lowest mode of deformation
SCR: _____315] (22>

The results obtained from our dynamical anal-
ysis conform to the result obtained by Timos-
henko. This is physically reasonable, because
for the lowest mode of deformation (#=2)
corresponds only to bending mode as there is

. 0w
no change of sign of o

2.2. Analysis 3

We now analyze the cirtical buckling of the
circular ring with only shear deformation in
consideration.

The governing equations are

L () =m T €)
ERTIARIIN
M NR=0 (25)
S B ()
N=K'8AG )
$=¢+8 (28)
s=4(55+w) 29
%w— =u (30)

Here, S is the radial compressive prestress, N
is the shear force acting across section, K’ form
factor of the cross section, ¢ the total deform-
ation, ¢ is the deformation due to bending andg
is the deformation due to shear.

From Eq. (27)(28) and (29), we can write
¢ as follows, ie,

_ 1 (ou N

=% (55 )~ Kac G
Substituting Eq. (31) into Eq. (26) and solving
for M, we obtain M as follows
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_ EI(1 (?u , ow
M=Su+~p-{ (G 57
___12%._.451__}
20 KAG
Substituiing Eq. (32) into Eq. (25) results
29 EI | EI 2w _ EI 1
< {sur( g+ S Ta
aN N
L)} NR=0

Dividing by R and rearranging, we get

(32)

EI 0* S ou
(‘-—wrac e )N = a5
EI 9% EI 2w
TR e TR e =0 G3)

We have have now combined Eq. (25)(26)(27)
(28) and (29) int one Eq. (33).
From Eq. (23)

w _ N
(T-$)=mR-ZH - T (34)

Substitution Eq. (34) into Eq. (24) yields
2. 2,
Tl (mR G ) N =m G
Multiplying both sides by R and rearranging,
we get
~(Gr+1 )N-mR L mR-Z- Tt —o
35
We have condensed relation of Eq. (23) and
(24) into Eq. (35) So, the relation from Eq.
(23) upto (29) are combined as Eq. (33) and
(35).
We can remove the terms including N by
applying the linear operator (-aa;—z-{—l) to Eq.

(33)and another operator ( 1——172%5 %T)

to Eq. (35) and add two equations.
This operation leaves the following terms.

o2 S ou EI ?%u EI o*w
<aez “){‘R‘ 0 TR e TR am}

"L(l“?e‘z%é%z‘)
k-2 e 2o

Rearranging and expanding these terms, and

using inextensional condition Eq. (30), we can
obtain one single governing equation.
2w ot 021w R2S 92
5 T2 o5 T or T El o

0w _mR* ¢ ¢ 0*w

<602 “")‘ ET o\~ aﬁz>
mR? 9% [ dw _ B*w

t A (G5 @

We assume a solution for this governing equa-

tion as
W=y, o+
Substituting this solution into Eq. (36) resultes
Q as follows.
Q:{ Eln*(n*—1)*— R:Sn*(n*—1) }1’2
mR (A +nd)+ {(ElmRw*(n*+1)/ K’ AG}
(37

If we set @=0, we obtain critical buckling

load Scr as follows.
2
See=-2AE1). (38)

When we set =2, we obtain critical buckling
load for the circular ring.

SCR: 3‘/52‘[ (39)

3. Conclusion

We have applied the dynamic analysis to the
problem of critical buckling load of a circular
ring. In three separate analysis, we have obt-
ained corresponding frequency formulas under
prestressing force with consideration on trans-
lational inertia, and shear effect. As a result,
we have shown that these effects do not change
the critical buckling load in the extreme while
these effects do influence only the vibrational
frequencies in the course of reaching the critical
buckling load.

The analysis performed in this study confir-
med the reliablity of the classical theory on
buckling load of the circular ring and derived

new formulas on natural frequency considering
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the same effects mentioned above.
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