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1. Introduction

Of the several methods used for evaluating
the impact strength of toughened rigid plastics,
the falling weight test as detailed for example
in ASTM method D 3029~78% is generally
recognized as providing the most usefut indic-
ation of relative impact strength under service
conditions. Briefly, the conventional falling we-
ight impact test seeks to determine the energy
level of an impacting dart which can be expected
to cause fracture in 50 percent of samples tested.
The samples are generally plaques prepared by
injection molding held in place on the boundary

and centrally impacted. Thus there are two main
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features of a falling weight test which together
serve o distinguish it from other types of impact
tests such as notched and unnotched Izod and
Charpy tests, or conventional high strain rate
tension and torsion tests: i) Fracture is initiated
on the as molded surface as a result of impact
on the opposite surface. Since the stress state is
essentially isotropic in the plane of the surface,
fracture should initiate naturally at an inherent
flaw rather than at an artificial cut or notch.
ii) The test is designed to place the samples
under conditions at the critical state, i.e. the
most severe conditions at which half the popu-
lation of the samples survives. Unfortunately,
a major drawback of the conventional test pro-
cedures is that in order to obtain a single impact
strength value that is statistically meaningful,
a relative large number of identical samples
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must be tested. If one is willing to abandon the
requirement that the test be performed at near
critical conditions and instead measures the en-
ergy lost in fracturing a sample when an excess
of energy is furnishéed to insure fracture, the

amount of testing needed to produce statistically -

meaningful results can be significantly reduced.

Two different methods of performing such
tests have been reported recently. One by Gon-
zalez and Stowell®® may be described as an
instrumented impact test similar to the instrum-
ented Charpy and Izod tests. A transducer (in
this caes a strain gage Dynamic Load Cell) is
attached to the falling weight and produces a
force-time record of the impact. This record
may then be interpreted and analyzed and the
energy delivered to the sample obtained from
a simple calculation involving the impact velocity
and the
integrating the force-time record. An alternative
method has been used by Dow Chemical and
Detroit Testing Labs as a basis for designing
an impact tester called a Dymetron. In this

impulse. The latter is found by

instrument gas pressure is used to impart a
calibrated amount of energy to a dart which
impacts the sample. The wunused energy is
calculated (actually a table look-up) from the
reading of a pressure transducer located in an
enclosed cylinder above a piston which travels
with the impacting dart. '

Both methods have obvious advantages and
disadvantages; in particular the instrumented test
furnishes a record which can be analyzed and
interpreted to yield considerably more information
than just the energy used in fracturing the sa-
mple, whereas the Dymetron is quick, simple
to operate, and furnishes the fracture energy
directly. However, in both cases, and to some
extent in the conventional falling weight test,
the impact conditions (e. g., impact velocity or
mass of the impacting dart) are arbitrary. The

results are further clouded by the inherent sta-
tistical scatter in all three impact tests due to
the extreme sensitivity of the fracture process
to surface conditions, inhomogeneities, and the
distribution of flaws in the samples. A general
analysis of falling weight type impact tests
would therefore be a useful guide in attempting
to correlate results of the various tests completed
under differing mechanical conditions.

In the next section a mechanical model of dart
impact type tests on toughened rigid plastics is
proposed and analyzed. For the sample plate
some approximate computations are then perfo-
rmed to assess the relative importance of various
parameters such as the impact velocity, fracture
initiation energy and critical stress. To this end
the load-deflection behavior of the plate is based
on the assumption that the material is viscoel-
astic. Furthermore, intreducing a quasistatic li-
near viscoelastic constitutive relation for small
motions we take up the maximum normal stress
criterion of fracture initiation which rests on the
basic concept of linear elastic fracture mechanics.
Finally we examine the plausibility of these
assumptions within the frame work of a recent
theory of crack initiation and growth in viscoe-
lastic materials due to Shapery®

2. Plate Impact Analyses

In either a conventional falling weight impact
test or in a Dymetron test we model the sample
as a thin circular plate supported at the bound-
ary somewhere between a clamped condition as
in the conventional test, and simple supports as
in the Dymetron tester. The plate is centrally
impacted at {=0 by a “dart” of weight W (i.e.
mass m=W/g) driven by the external force ¢
(1) (in the falling weight test g({) =W, in the
Dymetron it is the force of driving pressure less
the weight of the piston dart assembly). We
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denote by v(¢) the velocity of the dart and write
v, for the impact velocity: vo=vl._, '

To simplify the analysis we make the follo-
wing assumptions:

1) After contact and prior to fracture, the di-
splacement of the center of the plate and the
dart are identical. Thus, we are ignoring pene-
tration of the dart into the plate material.

ii) The contact force between dart and plate,
denoted P(¢), is non decreasing and continuous
from impact to fracture initiation.

iii) The load-deflection behavior of the plate
can be characterized by a quasi-static linear
viscoelastic constitutive relation of the form

PW®={ Ge—ty(t)dr <)
where G(¥), >0 represents the plate relaxation
function (assuming a rest history for the plate
prior to impact)

and v({)= dd—L;} is the central deflection velocity
of the plate.

iv) Fracture is initiated when the stresses in
the face opposite the impact reach a critical value.
In view of the preceding assumptions, we intr-
oduce an alternative criterion that fracture is
initiated at {=f{, when the load has reached a
critical value

P> =P. @

We will examine the plausibility of these as-
sumptions later.

Referring to Fig. 1 we write the eguation of

dart

|
i ) Lvit)
'v

P(t; plt)

motion for the dart as

dv :
q(®)—~ P(f) mM—r— ar 3

On comparing this with the constitutive equ-
ation of the plate (1) and eliminating the contact
force P(#) we obtain the following mtegro -diff-
erential equation for the velocity: )
L= la-fct-rwwar] @

By using the Laplace transformation of equa-
tion (4) and then inverting, we may write

e+ Imu, + g(s) et
v = oni Sc_im ms+G(s) ds ©

__ 1 (e Dmw, £ 3()IG(s)e oy
Py= 27'2 cien ms+G(S) ds (6
With the expectation that P(f) is non decre-

asing (which is consistent with —gti<0, q(®)

essentially constant from impact to fracture) we
may calculate the time to initiate fracture imp-
It then follows that
the energy imparted to the plate from the initial

licitely from equation (2).

impact to the initiation of fracture is given by

UC:S:P(L‘)v(t)dt S [Q(f)_m—cﬁ—]v(t)dt
=S:q(z‘)v(t)dt—?m[v(z‘c)z——voz] D

3. Some Approximate Computations

In order to study the effect of the initial impact
velocity and other parameters on the energy to
initiate fracture, an explicit expression for the
plate relaxation G(¢) is needed. The following
approximate analysis should suffice to indicate
trends.

For a linearly elastic plate of radius a and
thickness 4 subjected to a concentrated load P
at its center, the center deflection is given by
Timoshenko®as

_ Pa?k
=16zD &

where D=FEh*/12(1—*) with E“ the modulus
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of elasticity and v Poisson's ratio, and % is a
constant reflecting the nature of the boundary
supports with 2=1 for clamped edges and k=
(3+v)/(1+v) for simple supports. Inverting
equation (8) we can write
3

P=§§%€%% ©

For the actual plate material we write E(¢)
for the uniaxial relaxation modulus and treat
Piosson’s ratio constant. Then assume that the
concentrated force needed to effect a suddenly
applied constant central deflection w is approxi-
mated by (9) with the elsticity modulus E re-
placed by the relaxation modulus E(¢). Thus

__4nE@®R
GO =gk -y a0

Furthermore, we assume that during the time
interval from impact to fracture the viscoelastic
behavior of the plate material may be adequately
described by the modified Maxwell element model
such as

EM=Es+(E,—Efe an
where E, is the instaneous modulus, E; is the
equilibrium modulus and £z is a principal relax-

ation time.

Then
~r~_ ATHE(S)
GO =ggra=ry

To simplify results even further, we suppose
that ¢(¢) is negligible compared to P(#) and
hence ignore it in evaluating equations (5), (6),
and (7). Thus

1 (et my,B*(a/lr+S)estds (12)
27l Je-iwS?+1/trSE+ B2+ B2/t
47fh3E0
3a%k(1—v)m
Note that denominator in (12) is a cubic poly-

PH)=

where B?= , a=FE/E;

nomial of s. Thus we can write
Pty =mu,B*(ae’t +a,e’** +aze°st) a3
where

a:=lim alte+S$
s (5—8)(s—$)(5—53)
s St[ <S_Si) ]

and each s;, i=1,2,3
is a root of the cubic polynomial of denominator
in (12). Finally the fracture initiation energy
becomes

F%mvo"-[l— {1 +BZ[—‘S{‘—(1 —e1)

(1) + & (1—?’“)]}2] 19

S3
where £, is the smallest positive solution of £
(t.)=P..

It might prove useful to have an estimate for
P. in terms of a critical uniform biaxial stress
level at the surface of the plate opposite the
impact point.

For this purpose, we observe that the maximum
tensile stress opposite a concentrated load P at
the center of an elastic circular is given by

P
O max= 7};2 )

where 7=(1+v)(. 485171—2—4—.52)-%7" end 7' =0

for a clamped boundary while y'=. 48 for a si-
mply supported boundary. Again we suppose
that between impact and fracture the quasi-static
equilibrium stresses under the load for the vis-
coelastic plate are reasonably well approximated
by those associated with the elastic solution so
that our crack initiation criterion can be written:

P.= —sz : (16)

where S. is a critical stress level.

Of particular interest is the dependence of the
fracture initiation energy U. on the impact velo-
city v, the mass of impacting dart s, and the
critical stress S.. For definiteness we adopt as
typical data for a TPP Dymetron disc sample
the following values:

Ey=2.9x10°psi (1.999Gpa)

Es=1.16x10°psi (0.799Gpa)

v=.3

tra=.029sec

a=1.5in (0. 0381m)
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h=.125in (0.00318m)

In addition, as standard conditions we take
the weight of the dart as W=4,8 lb (4. 448N)
(the weight of the dart-piston assembly in the
Dymetron), the impact velocity v,=15 ft/sec
(4.572m/s) and the critical stress S. =20, 000psi
(0.138Gpa). We have also assumed simply su-
pported conditions at the disc boundary. This
corresponds to a fracture initiation energy of U.
=1, 227 ft-1b(1. 664N-m) and a fracture initiation
time of f.=1.436ms.

In Fig. 2 we have plotted the effect of varying
impact velocity on fracture initiation energy
values for three values of the dart mass around
the standard conditions. The fracture initiation
energy appears to be relatively insensitive to the
kinetic energy delivered which indicates that
both instrumented falling weight and Dymetron
tests should correlate reasonably well with conv-
entional falling weight results.

In Fig. 3 we show the effect of variations in
critical stress which account for the rather large
scatter frequently seen in (unnotched) impact
strength data, as the critical stress would be
quite sensitive to surface conditions. The corre-
sponding fracture initiation time can be seen in
Fig. 4. '
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4. Discussion of the Analysis

Several assumptions and simplifications were
introduced in the preceding sections which have
implications regarding the validity and range of
applicability of the results. The basic assumpti-
ons underlying the entire analysis is that a quasi-
static linear viscoelastic model is appropriate.
This would certainly not be the case if stress
waves due to the impact had insufficient time
to attenuate at fracture initiation.

In a viscoelastic material plane compression
stress waves will propagate with a velocity as



290 Jin Woo Kim

shown in Christensen®
C.— ‘/ Ey(1—vp) 17
TV =200 an
where E, v, are the inital values of the uniaxial
relaxation modulus and Poisson’s ratio and p is

the mass density of the material. For illustrative
purposes we take FE,=2,9x10°psi (1.999Gpa),
vw=.3, p=1.728 slug/ft?(890.6kg/m?*) (which
might correspond to a toughened polypropylene
at a temperature of-20F) and find C,=5703ft/
sec(1738. 3m/s) compared to an impact velocity
of about 12ft/sec(3.658m/s) in a typical falling
weight test. For a plate thickness of , 125 in(0.
00318m). it would take the compression wave
only . 00187 ms to tansverse the thickness of
the plate whereas fracture initiation times are
typically on the order of 1 to 5 ms.

To estimate the effect of the boundary cond-
itions a conservative measure of the stress wave
speed is afforded by the propagation velocity of
shear waves;

C.= _/:)L 18

where u,=F,/2(1+v,) is the initial value of
the shear relaxation modulus.

For a 3 in (0.0762m). diameter disc of the
same material as above the time needed for a

shear wave to reflect from the boundary and
return to the center of the plate is . 082 ms
which is still comfortably shorter than the fra-
cture initiation times quoted above.

At higher impact velocities it is possible that
the initial compressive shock wave reflecting off
the bottom of the plate as a tension wave of
double amplitude could do sufficient damage to
reduce considerably the stress level at which
fracture is initiated. For a plane shock wave
the stress discontinuity associated with a velocity
jump of [[v] is given by

lol=—pC,lv]

If we ignore any attenuation and treat the

initial as a plane shock wave with a velocity
jump v,, the maximum tensile stress on reflec-
tion from the face is

0=20C,0,
which ranges from 1642 psi (11.32 Mpa) to
4106 psi (28.31 Mpa) for impact velocities of
12 ft/sec (3.658m/s) to 30 ft/sec (9.144 m/s)
in the example material. A typical value of the
tensile yield stress is around 4000 psi (27,58
Mpa)

The use of equation (1) to describe the load-
deflection behavior of the plate is based on the
assumption that the material is viscoelastic since
the load is uniquely determined by the history
of the deflection of the plate (again, ignoring
inertia effects). Then, under very general con-
ditions the form of equation (1) is a good app-
“small” motions as shown in
Truesdell®®. Furthermore, if the material beha-

roximation for

vior is linear with constant Poisson's ratio and
the deformations small, then within the bounds of
elementary quasi-static plate theory the normal
stress distribution in linear through the plate
thickness and the plate modulus is related to the
uniaxial tension modulus through

3
D(t):lTlgl(i_)i‘z—)

Next we take up the fracture initiation crite-
rion equation (2) which rests on the following
ideas. The basic assumption of linear elastic
fracture mechanics is that for a given pattern
of loading a crack will propagate when the stress
intensity factor at the site reaches a critical
value. If flaws at which a crack might initiate
are uniformly distributed thorughout the plate,
then for a given flaw distribution and loading
pattern the stress intensity factor at any site is
proportional to the load, and thus a crack will
start where the stress is maximum(opposite the
load) when the load reaches a critical value.

Some modification in this conclusion is indic-
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ated if the material is indeed viscoelastic rather
than elastic. In particular, we should expect
that the onset of crack propagation would depend
on the history of the stress intensity factor at
the site. The effect of this on the results obta-
ined in the preceding section can be estimated
within the frame work of a recent theory of
crack initiation and growth in viscoelastic mat-
erials due to Shapery‘®. The basic idea is that
there is a small zone in the neighborhood of the
crack tip (called the failure zone) in which se-
paration has occured but significant forces con-
tinue to act between material in adjacent “crack
surfaces”. The energy required to separate sur-
faces to the point where these failure zone forces
are no longer significant is taken to be material
property and hence may be used as a criterion
for crack propagation.

5. Fracture Initiation by Shapery’s Criterion

By making a series of simplifying assumptions
in a rather general but complex analysis, Sha-
pery‘® is able to calculate the time to initiate a
fracture in a plane strain situation from the
relation

= LR (19)
where ¢; is the time to initiate crack growth, [’
is the specific energy parameter associated with
crack growth in the material, K(¢) is the ope-
ning mode stress intensity factor at the critical
flaw (assumed to be monotone non-decreasing)
and C*(¢) is the so called secant compliance of
the material defined by

C* ()= ooy} CCt—1) Jr K ar
@)
where C(¢) is the usual creep compliance. For
the proposed modified Maxwell material as in
the earlier approximate computations

COy=g 1+ (E~De-ymn] ()

If we suppose that the stress intensity factor is
proportional to the maximum stress and therefore
the load P(¢) then from equations (13) and (15)
we conclude ’

K@ =K (a,ert+ azesrt -+ azest) _

=K,F () 22)
where K, is a constant factor. Then we note

that the function of time

C® 1 ¢ CU—t) d R
G, T K® N G dt’[Kz(f ) at

rah e [ 2@(]:;;

where
lirgl C*(t):CO:IiT c® 24)
[ 2ad -

Substituting equations (22) and (23) into the

fracture initiation criteria (19) yields
r=LKFU)CH )

or

S TGy /8T
Py E= ) 2 )

To relate this criterion to equation (16) we re-

write equation (16) in the form
P.=P({)y=mv,B*F(t.) or

T 26)

We note first that the right hand sides of equ-
ations (25) and (26) are constant. In the limi-
ting case when both ¢ and f. approach zero the
left hand sides coincide hence the constants are
the same and we conclude that £ and {. are
related to each other through

F(tc):F(tf)/ Q‘C(i—) @n

Therefore the time to fracture can be expressed

as

Consequently, substituting (21) into (28), we
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Table 1 Comparison of the fracture initiation with Shapery’s criterion

Jin Woo

Kim

S.(psi) l v (ft/s) l t.(ms) U.(ft-1b) t:(ms) U.:(ft-1b) t.(ms) U.(ft-1b) t:i(ms) U:(ft-1b)

15 0.7091 0.3055 0,7062 0.3030 0.7056 0.3035 0.7027 0.3010

1,000 30 0.3516 0.3030 0. 3508 0.3018 0.3507 0. 3020 0. 3500 0. 3008
45 0.2338 0.3022 0.2335 0.3014 0.2334 0.3015 0.2331 0.3007

15 1.4507 11,2434 1, 4379 1.2224 1. 4356 1. 2265 1.4234 1, 2062

20, 000 30 0.7091 1. 2222 0.7062 1,2122 0.7056 1.2141 0.7027 1.2043
45 0.4700 1.2154 0.4687 1.2089 0.4685 1.2102 0.4672 11,2037

15 3.1321 5.1837 3.0625 4,9854 3.0529 5.0219 2.9902 4.8422

40, 000 30 1.4507 4.9738 1.4379 4,8897 1.4356 4.9059 1.4234 4,8251
45 0. 9581 4, 9163 0. 9465 4, 8621 0.9455 4.,8727 0.9403 4. 8200

(1psi=6. 895kpa, 1ft/s=0, 3048m/s, 1ft-lb=1, 356N-m)

obtain
O
CF2@))at 29
Now, the problem is posed to find the smallest
positive root of this integral equation(29). Even
though there is some difficulty for very small &
which becomes the case of Maxwell two element
model, the analysis is tractable numerically.
Table 1 shows the numerical results including
Maxwell two element model for the sample. In
the standard case treated in the preceding section
we had {.=1.436 ms which corresponds #=1.
423 ms. This in turn decreases the energy to
initiate fracture by about 1.7 percent. It can be
also observed that the fracture initiation energy
for the three element model can be reduced to
1~3 percent than that for Maxwell model.

6. Concluding Remarks

Of particular interest is the dependence of the
fracture initiation energy on the impact velocity,
the mass of impacting dart and the critical str-
ess. We showed the effect of variations in critical
stress which could account for the rather large
scatter frequently seen in impact strength data,
as the critical stress would be quite sensitive to
surface conditions. The fracture initiation energy

appeared to be relatively insensitive to the kin-
etic energy delivered which indicated that both
instrumented falling weight and Dymetron tests
should correlate reasonably well with conventi-
onal falling weight results.

A final consideration concerns the relation
between the energy transferred to the sample
up to the time fracture is initiated and the add-
itional energy absorbed from the impacting device
while cracks propagate through the sample. An
analysis of the viscoelastic crack propagation
problem under the loading conditions of a “falling
dart” test and within the framework of Shapery’s
theory is all but hopelessly intractable. Never-
theless, we can make some general estimates of
the order of magnitude of this additional energy
compared to the fracture initiation energy.

In simpler loading situations where the stress
intensity factor is high, many investigators inc-
luding Knauss‘™ have calculated and measured
crack propagations velocities in viscoelastic she-
ets. The speeds approach an appreciable fraction
of the stress wave propagation velocity. On the
basis of the preceding example calculations of
fracture initiation time and corresponding wave
speeds, it is likely that the time for the cracks
to propagate through the sample is negligible
compared to the time to initiate fracture, and
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hence the additional work done by the impacting
dart must be insignificant.

More direct evidence of this assertion is rep-
orted in Gonzalez and Stowell® where the load-
time trace for an instrumented falling weight
test is reproduced. For samples which cracked
in a brittle fashion the rise time of the load is
approximately 4 ms which corresponds to the
fracture initiation time. The load then dropped
to zero sharply (less than .1 ms) indicating
completion of the fracture process.
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