COMPACT OPERATORS AND TENSOR PRODUCTS IN (DF)SPACES

BYUNG YOUNG KIM

This is a study of [weakly] compact linear operators with domains in (DF) spaces and ranges in (F) spaces, And we investigate the projective tensor product $E \bigotimes_{\pi} F$ and its completion $E \bigotimes_{\pi} F$ when E and F are various weaker forms $(\omega$ -barrelled, C-barrelled and sequentially barrelled) of barrelled (DF) spaces and Banach-Mackey (DF) spaces.

The space of continuous linear operators from an locally convex space E into an locally convex space F is denoted by $\mathcal{L}(E,F)$. An operator $A \in \mathcal{L}(E,F)$ is called [weakly] compact, if there exists a zero neighborhood U in E such that A(U) is [weakly] relatively compact in F. We obtain the following main results.

THEOREM 3.1. Let E be a (DF) space and F an (F) space. Then $A \in \mathcal{L}(E, F)$ is compact if and only if its dual $A' \in \mathcal{L}(F'_b, E'_b)$ is compact.

THEOREM 4.1. Let E and F be (DF) spaces, Then

- (a) if E and F are ω -barrelled, so are $E \otimes_{\pi} F$ and $E \widetilde{\otimes}_{\pi} F$
- (b) if E and F are C-barrelled, so are $E \bigotimes_{\pi} F$ and $E \widetilde{\bigotimes}_{\pi} F$.
- (c) if E and F are sequentially barrelled, so are $E \otimes_{\pi} F$ and $E \widetilde{\otimes}_{\pi} F$.
- (d) if E and F are Banach-Mackey, so are $E \otimes_{-} F$ and $E \widetilde{\otimes}_{-} F$.

THEOREM 4.2. Let E and F be (DF) spaces. Then the following are equivalent.

- (a) $E \otimes_{\pi} F$ (resp. $E \widetilde{\otimes}_{\pi} F$) is ω -barrelled.
- (b) $E \otimes_{\pi} F$ (resp. $E \widetilde{\otimes}_{\pi} F$) is C-barrelled.
- (c) $E \otimes_{\pi} F$ (resp. $E \widetilde{\otimes}_{\pi} F$) is sequentially barrelled.
- (d) $E \otimes_{\pi} F$ (resp. $E \widetilde{\otimes}_{\pi} F$) is Banach-Mackey.

Soonchunhyang University Asan, 330-62, Korea.

Thesis submitted to Korea University, November 1983. Degree approved February 1984. Supervisor: Professor Tae Hwan Chang.