ON THE NUMERICAL RANGE FOR NONLINEAR OPERATORS

KYONG SOO KIM AND YOUNGOH YANG

1. Introduction

Let B be a unital C^* -algebra, B^* the dual space of B, and X the Hilbert B-module with a B-valued inner product \langle , \rangle [6]. We define the norm $\| \cdot \|_X$ on X by $\|x\|_X = \|\langle x, x \rangle\|^{\frac{1}{2}}$. Then for any bounded linear operator T on X, the B-spatial numerical range $W_B(T)$ is defined by $W_B(T) = \{f(\langle Tx, x \rangle) : x \in X, f \in B^*$, $\|x\|_X = \|f\| = f(\langle x, x \rangle) = 1\}$ [7]. In [2], Canavati defined a numerical range for the class of all numerically bounded (nonlinear) maps on a Banach space and gave some of the basic properties of such numerical range. In this paper, we shall define a numerical range for a new class of all B^* -numerically bounded maps on a Hilbert B-module, and study analogous results of it in a systematic way. Among other properties, our numerical range will be compact and connected, and will coincide with $\overline{W_B(T)}$, in the particular case when T is a bounded linear operator on a Hilbert B-module X.

Throughout this paper, a Hilbert B-module X is assumed to have a vector space structure over the complex numbers \mathbb{C} compatible with that of B in the sense that $\lambda(xb) = (\lambda x)b = x(\lambda b)$ ($x \in X$, $b \in B$, $\lambda \in \mathbb{C}$). We will use the following notations. L(X) is the Banach space of all bounded linear operators on X. B(X) is the vector space of all continuous maps $P: X \longrightarrow X$ such that $\|P(x)\|_X \leq M\|x\|_X$ for some $M \geq 0$ and all x in X. An element of B(X) is called a bounded map on X. Q(X) is the vector space of all quasibounded maps on X [2], [3]. We also denote the operator norm on L(X) by $\|\cdot\|$.

2. Some Banach spaces of nonlinear maps.

In [7], the norm×weak* topology in $X \times B^{\#}$ is defined as the product topology in $X \times B^{\#}$ given by the norm topology on X and the weak* topology on $B^{\#}$. We consider the following subsets of $X \times B^{\#}$. $II_r = \{(x, f) \in X \times B^{\#} : ||x||_X = ||f|| \ge r$, $f(\langle x, x \rangle) = ||x||_X^3\}$ for r > 0, and $II_0 = \bigcup II_r$.

The following two results are essenstially due to Bonsall, Cain and Schneider [1]. We omit the proofs of them, because they would be similar as in [2].

LEMMA. Let π denote the natural projection of $X \times B^{\sharp}$ onto X, and let A be a subset of II_r that is relatively closed in II_r with respect to the norm \times weak*

topology. Then $\pi(A)$ is a norm closed subset of X.

PROPOSITION 2.1. Each $II_r(r>0)$ and II_0 are connected subsets of $X\times B^\#$ with the norm×weak* topology, unless X has dimension one over R.

From now on we shall assume that II_0 has the norm×weak* topology induced as a subset of $X \times B^{\#}$. Also we shall assume that X does not have dimension one over R.

DEFINITION 2.1. A continuous map $F: II_0 \longrightarrow X$ is called B^* -bounded if $||F||^* = \sup_{II_0} \frac{||F(x,f)||_X}{||x||_X} < \infty$. We denote by $B^*((X))$, the vector space of all B^* -bounded maps. Notice that $||\cdot||^*$ is a norm on $B^*(X)$ and $B^*(X)$ is a Banach space. We can consider the vector space B(X) as a vector subspace of $B^*(X)$ in a natural way, namely; if $P \in B(X)$, then the mapping F(x,f) = P(x) belongs to $B^*(X)$ and $||P|| = ||F||^*$ [2].

DEFINITION 2.2. A continuous map $F: II_0 \longrightarrow X$ is called B*-quasibounded if $|F|^* = \lim_{r \to \infty} \sup_{I|r} \frac{||F(x,f)||_X}{||x||_X} < \infty$.

We denote by $Q^*(X)$, the vector space of all B^* -quasibounded maps. Notice that $|\cdot|^*$ is a seminorm on $Q^*(X)$. Obviously one has $B^*(X) \subset Q^*(X)$ and $|F|^* \le ||F||^*$. We can consider the vector space Q(X) as a vector subspace of $Q^*(X)$ in a natural way, namely; if $P \in Q(X)$, then the mapping F(x,f) = P(x) belongs to $Q^*(X)$ and $|P| = |F|^*$. Here $|\cdot|$ is a seminorm on Q(X) [2], [3].

PROPOSITION 2.2. For any $F \in Q^*(X)$, there exists a sequence $\{F_n\}$ in $B^*(X)$ such that $|F_n - F|^* = 0$ (n = 1, 2, 3, ...) and $||F_n||^* \longrightarrow |F|^*$ as $n \longrightarrow \infty$.

Proof. Let $\rho^2 = ||x||_X^2 + ||f||^2$, and define $F_n(x, f) = F(x, f)$ if $\rho \ge n$, $F_n(x, f) = \frac{\rho}{n} F\left(\frac{n}{\rho}x, \frac{n}{\rho}f\right)$ if $0 < \rho < n$. We have

 $||F_n||^* = \sup_{\mathbb{R}_0} \frac{||F_n(x, f)||}{||x||_X} X = \sup_{\mathbb{R}_0} \frac{||F(x, f)||_X}{||x||_X}. \text{ Therefore } F_n \in B^*(X) \text{ for all } n$ large enough and $||F_n||^* \longrightarrow |F|^*$ as $n \longrightarrow \infty$.

DEFINITION 2.3. Let F, $G \in Q^*(X)$. The mapping F is said to be B^* -asymptotically equivalent to G if $|F-G|^*=0$. It is easy to see that this is an equivalence relation.

 $\tilde{Q}^*(X)$ is the normed space of all equivalence classes of B^* -quasibounded maps, i.e., $\tilde{Q}^*(X) = Q^*(X)/N(|\cdot|^*)$, where $N(|\cdot|^*) = \{F \in Q^*(X) : |F|^* = 0\}$. The norm on $\tilde{Q}^*(X)$ is the one induced by $|\cdot|^*$ and will be denoted in the same way.

From Proposition 2.2, we see that the mapping $B^*(X) \longrightarrow \tilde{Q}^*(X)$, $F \longrightarrow \tilde{F}$ is onto.

PROPOSITION 2.3. $\tilde{Q}^*(X)$ is a Banach space.

Proof. Let $\{\tilde{F}_n\}$ be a sequence in $\tilde{Q}^*(X)$ such that $\sum |\tilde{F}_n|^* < \infty$. We have to show that $\sum \tilde{F}_n$ converges. By Proposition 2.2, for any positive integer n we can choose $G_n \in B^*(X)$ such that $\tilde{G}_n = \tilde{F}_n$ and $||G_n||^* \le |F_n|^* + 2^{-n}$. Since $B^*(X)$ is a Banach space, $\sum G_n$ converges to an element $G \in B^*(X)$. From the continuity of the linear projection $B^*(X) \longrightarrow \tilde{Q}^*(X)$ we obtain $\sum \tilde{G}_n = \sum \tilde{F}_n = \tilde{G}$.

Definition 2.4. A continuous map $F: \Pi_0 \longrightarrow X$ is called B*-numerically bounded if

$$\omega^*(F) = \lim_{r \to \infty} \sup_{\mathbb{R}_r} \frac{|f(\langle F(x, f), x \rangle)|}{\|x\|_X^2 \|f\|} < \infty.$$

We denote by $W^*(X)$, the vector space of all B^* -numerically bounded maps. Notice that ω^* is a seminorm on $W^*(X)$. If $F \in W^*(X)$, then we let

$$\alpha^*(F) = \lim_{r \to \infty} \inf_{\mathbb{H}_r} \frac{|f(\langle F(x,f), x \rangle)|}{\|x\|_X^2 \|f\|}.$$

Obviously one has $Q^*(X) \subset W^*(X)$ and $\omega^*(F) \leq |F|^*$.

Definition 2.5. Let $F \in W^*(X)$ and consider the maps $F_v : II_0 \longrightarrow X$ and $F_\tau : II_0 \longrightarrow X$ given by $F_v(x, f) = \frac{f(\langle F(x, f), x \rangle)}{||x||_X^2 ||f||} x$ and

 $F_{\tau}(x, f) = F(x, f) - F_{\nu}(x, f)$. Then $F = F_{\nu} + F_{\tau}$. The maps F_{ν} and F_{τ} are called the normal and tangent components of F respectively. It is easy to show that if $F \in W^*(X)$, then

- (a) $f(\langle F_{\nu}(x, f), x \rangle) = f(\langle F(x, f), x \rangle), (x, f) \in \mathbb{I}_0.$
- (b) $f(\langle F_{\tau}(x, f), x \rangle) = 0$, $(x, f) \in \mathbb{I}_0$.
- (c) $F_{\nu} \in Q^*(X)$ and $|F_{\nu}|^* = \omega^*(F)$. Hence we obtain the following result.

PROPOSITION 2.4. $F \in W^*(X)$ if and only if there exists continuous mappings $G, H: II_0 \longrightarrow X$ with $G \in Q^*(X)$ and H satisfying $f(\langle H(x,f), x \rangle) = 0$ $((x,f) \in II_0)$ such that F = G + H. Such a map H is called a B^* -orthogonal map.

DEFINITION 2.6. Let $F,G \in W^*(X)$. The mapping F is said to be B^* -asymptotically numerically equivalent to G if $\omega^*(F-G)=0$. It is easy to see that this is an equivalence relation. $\hat{W}^*(X)$ is the normed space of all equivalence classes of B^* -numerically bounded maps, i.e., $\hat{W}^*(X) = W^*(X)/N(\omega^*)$, where $F \in N(\omega^*)$ iff $\omega^*(F)=0$. The norm on $W^*(X)$ is the one induced by ω^* , and it will be denoted in the same way.

PROPOSITION 2.5. $\hat{W}^*(X)$ is a Banach space.

Proof. Let $\{\hat{F}_n\}$ be a sequence in $\hat{W}^*(X)$ such that $\sum \omega^*(\hat{F}_n) < \infty$. We have to show that $\sum \hat{F}_n$ converges. Since $\omega^*(\hat{F}) = \omega^*(F) = |F_{\nu}|^* = |\tilde{F}_{\nu}|^* (F \in W^*(X))$, where $F_{\nu} \in \mathcal{Q}^*(X)$ is the normal component of F, then we have

$$\sum |\tilde{F}_{n\nu}|^* = \sum \omega^* (\hat{F}_n) < \infty. \tag{1}$$

But $\{\tilde{F}_{n\nu}\}$ is a sequence in the Banach space $\tilde{Q}^*(X)$, and it follows from (1) and Proposition 2.3 that the series $\sum \tilde{F}_{n\nu}$ converges to $\tilde{F} \in \tilde{Q}^*(X)$. Since the mapping $r: \tilde{Q}^*(X) \longrightarrow \hat{W}^*(X)$, $\tilde{F} \longrightarrow \hat{F}$ is linear and continuous we must have $\sum \hat{F}_{n\nu} = \sum r(\tilde{F}_{n\nu}) = r(\tilde{F}) = \hat{F}.$ (2)

But $\hat{F} = \hat{F}_{\nu}$ for $F \in W^*(X)$. Hence from (2) we obtain $\sum \hat{F}_n = \hat{F}$.

3. The B^* -numerical range.

Definition 3.1. Let $F \in W^*(X)$ and consider the continuous map $\phi_F : \Pi_0 \longrightarrow \mathbb{C}$ given by

$$\phi_F(x,f) = \frac{f(\langle F(x,f), x \rangle)}{\|x\|_X^2 \|f\|}.$$

We define the B*-numerical range $\Omega^*(F)$ of F as the set $\Omega^*(F) = \bigcap_{r>0} \overline{\phi_F(\overline{H_r})}$. In other words, $\lambda \in \Omega^*(F)$ if and only if there exists a sequence $\{(x_n, f_n)\}$ in $\overline{H_0}$ such that $||x_n||_X \ge n$ and

$$\frac{f_n(\langle F(x_n, f_n), x_n \rangle)}{\|x_n\|_X^2 \|f_n\|} \longrightarrow \lambda \text{ as } n \longrightarrow \infty.$$

Proposition 3.1. If $F \in W^*(X)$, then $\Omega^*(F)$ is a nonempty compact connected subset of \mathbb{C} .

Proof. Since $F \in W^*(X)$, then the sets $\overline{\phi_F(\overline{H_r})}$ are bounded for all r > 0 large enough. Now $\{\overline{\phi_F(\overline{H_r})}\}$ is a nested family of compact nonempty sets, therefore by Cantor's theorem $\Omega^*(F) \neq \phi$ and is compact. Now from Proposition 2.1 we have that each $\overline{\phi_F(\overline{H_r})}$ is a connected subset of \mathbb{C} . Thus $\Omega^*(F)$ being an intersection of a nested family of compact connected sets is connected as well.

The following properties of the B^* -numerical range are easy to check.

REMARK. If F, $G \in W^*(X)$ and $\lambda \in \mathbb{C}$, then

- (a) $\Omega^*(F_{\nu}) = \Omega^*(F)$ and $\Omega^*(F_{\tau}) = \{0\}$.
- (b) $\Omega^*(\lambda F) = \lambda \Omega^*(F)$.
- (c) $Q^*(\lambda \pi + F) = \lambda + Q^*(F)$, where $\pi : X \times B^{\#} \longrightarrow X$ denotes the natural projection.
- (d) $\Omega^*(F+G) \subseteq \Omega^*(F) + \Omega^*(G)$.
- (e) $\omega^*(F) = \max \{|\lambda| : \lambda \in \Omega^*(F)\}$. We call $\omega^*(F)$ the B*-numerical radius of F.

PROPOSITION 3.2. If $F, G \in W^*(X)$ and $\omega^*(F-G) = 0$, then $\Omega^*(F) = \Omega^*(G)$.

Proof. From the above Remark, we have $\Omega^*(F) = \Omega^*(F_{\nu})$ and $\Omega^*(G) = \Omega^*(G_{\nu})$. Also from Remark after Definition 2.5 we have $|F_{\nu} - G_{\nu}|^* = \omega^*(F - G) = 0$. We shall show that $\Omega^*(F_{\nu}) = \Omega^*(G_{\nu})$. Let $\lambda \in \Omega^*(F_{\nu})$. Then there exists a sequence $\{(x_n, f_n)\}$ in H_0 such that $\|x_n\|_X \ge n$ and

$$\frac{f_n(\langle F_\nu(x_n, f_n), x_n \rangle)}{\|x_n\|_X^2 \|f_n\|} \longrightarrow \lambda \text{ as } n \longrightarrow \infty.$$

Now

$$\frac{f_n(\langle G_{\nu}(x_n, f_n), x_n \rangle)}{\|x_n\|_{X^2} \|f_n\|} = \frac{f_n(\langle (G_{\nu} - F_{\nu}) (x_n, f_n), x_n \rangle)}{\|x_n\|_{X^2} \|f_n\|} + \frac{f_n(\langle F_{\nu}(x_n, f_n), x_n \rangle)}{\|x_n\|_{X^2} \|f_n\|}$$
(1)

But

$$\frac{|f_{n}(\langle (G_{\nu}-F_{\nu})(x_{n}, f_{n}), x_{n}\rangle)|}{||x_{n}||_{X}^{2}||f_{n}||} \leq \frac{||(G_{\nu}-F_{\nu})(x_{n}, f_{n})||_{X}}{||x_{n}||_{X}}$$

and $|G_{\nu}-F_{\nu}|^*=0$ imply

$$\frac{f_n(\langle (G_{\nu} - F_{\nu}) (x_n, f_n), x_n \rangle)}{\|x_n\|_X^2 \|f_n\|} \longrightarrow 0.$$
 (2)

Hence from (1) and (2) we see that

$$\frac{f_n(\langle G_\nu(x_n, f_n), x_n \rangle)}{\|x_n\|_{Y^2}\|f_n\|} \longrightarrow \lambda \text{ as } n \longrightarrow \infty.$$

Therefore $\Omega^*(F_{\nu}) \subseteq \Omega^*(G_{\nu})$. The inclusion $\Omega^*(G_{\nu}) \subseteq \Omega^*(F_{\nu})$ is proved in the same way.

PROPOSITION 3.3. If $F \in W^*(X)$, then (a) $\alpha^*(\mu\pi - F) \ge dist$ $(\mu, \Omega^*(F))$, $\mu \in \mathbb{C}$.

(b)
$$\Omega^*(F) = \{ \lambda \in \mathbb{C} : \alpha^*(\lambda \pi - F) = 0 \}.$$

Proof. (a) We shall show a little more, namely; that for any $\mu \in \mathbb{C}$, there exists $\lambda \in \Omega^*(F)$ such that $\alpha^*(\mu\pi - F) = |\mu - \lambda|$. By definition of $\alpha^*(\mu\pi - F)$, there is a sequence $\{(x_n, f_n)\}$ in I_0 such that $||x_n||_X \ge n$ and

$$\frac{|f_n(\langle (\mu\pi - F)(x_n, f_n), x_n \rangle)|}{||x_n||_X^2 ||f_n||} \longrightarrow \alpha^*(\mu\pi - F)$$
 (1)

Since $F \in W^*(X)$, without loss of generality we may assume that the sequence $\left\{\frac{f_n(\langle F(x_n, f_n), x_n\rangle)}{\|x_n\|_X^2\|f_n\|}\right\}$ is convergent to some $\lambda \in \Omega^*(F)$.

Thus from (1) we obtain $\alpha^*(\mu\pi - F) = |\mu - \lambda|$.

(b) Let $\Lambda = {\lambda \in \mathbb{C}: \alpha^*(\lambda \pi - F) = 0}$. Then from (a) we have $\Lambda \subseteq \Omega^*(F)$. Now let $\lambda \in \Omega^*(F)$. Then there is a sequence $\{(x_n, f_n)\}$ in II_0 such that $||x_n||_X \ge n$ and $\frac{f_n(\langle F(x_n, f_n), x_n \rangle)}{||x_n||_X^2||f_n||} \longrightarrow \lambda$.

This in turn implies that $\frac{f_n(\langle (\lambda \pi - F)(x_n, f_n), x_n \rangle)}{\|x_n\|_X^2\|f_n\|} \longrightarrow 0$, and hence that $\alpha^*(\lambda \pi - F) = 0$. Therefore $\lambda \in \Lambda$ and $\Omega^*(F) \subseteq \Lambda$.

PROPOSITION 3.4. Let $F, G \in W^*(X)$ and $\mu \in \mathbb{C}$. Then

- (a) $0 \le \alpha^*(F) \le \omega^*(F)$.
- (b) $\alpha^*(\mu F) = |\mu| \alpha^*(F)$.
- (c) $\alpha^*(F+G) \leq \alpha^*(F) + \omega^*(G)$
- (d) $\alpha^*(F) \omega^*(G) \leq \alpha^*(F+G)$
- (e) $|\alpha^*(F) \alpha^*(G)| \leq \omega^*(F G)$. So α^* is actually defined in $\hat{W}^*(X)$.

(f)
$$\alpha^*(F) \leq |\lambda|$$
 if $\lambda \in \Omega^*(F)$.

Proof. (a) an (b) follow from the definitions.

(c)
$$\alpha^*(F+G) = \lim_{r \to \infty} \inf_{\|r\|_r} \frac{|f(\langle (F+G)(x, f), x \rangle)|}{\|x\|_X^2 \|f\|}$$

$$\leq \lim_{r \to \infty} \inf_{\|r\|_r} \frac{|f(\langle F(x, f), x \rangle)|}{\|x\|_X^2 \|f\|} + \lim_{r \to \infty} \sup_{\|r\|_r} \frac{|f(\langle G(x, f), x \rangle)|}{\|x\|_X^2 \|f\|}$$

$$= \alpha^*(F) + \omega^*(G).$$

- (d) It follows from (c).
- (e) We have from (c) $\alpha^*(F) = \alpha^*(F G + G) \le \omega^*(F G) + \alpha^*(G)$. Hence $|\alpha^*(F) \alpha^*(G)| \le \omega^*(F G)$.
- (f) From (d) and Proposition 3.3 (b) we have

$$\alpha^*(F) - |\lambda| \le \alpha^*(\lambda \pi - F) = 0, \ \lambda \in \Omega^*(F).$$

PROPOSITION 3.5. If $F, G \in W^*(X)$, then $\gamma(\Omega^*(F), \Omega^*(G)) \leq \omega^*(F-G)$. Here γ is the Hausdorff metric in $\Gamma(\mathbb{C})$, which denotes the set of all non-void closed bounded subsets of (\mathbb{C}, d) .

Proof. We have

$$\gamma(\mathcal{Q}^*(F), \mathcal{Q}^*(G)) = \max \{ \sup \{ \operatorname{dist}(\lambda, \mathcal{Q}^*(F)) : \lambda \in \mathcal{Q}^*(G) \}, \sup \{ \operatorname{dist}(\lambda, \mathcal{Q}^*(G)) : \lambda \in \mathcal{Q}^*(F) \} \}.$$
(1)

and from Proposition 3.3

dist
$$(\lambda, \Omega^*(F)) \le \alpha^*(\lambda \pi - F)$$
, dist $(\lambda, \Omega^*(G)) \le \alpha^*(\lambda \pi - G)$. (2)

Also Proposition 3.3 and 3.4 (c) imply

$$\alpha^*(\lambda \pi - F) = \alpha^*((\lambda \pi - G) + (G - F)) \le \alpha^*(\lambda \pi - G) + \omega^*(G - F)$$

$$= \omega^*(F - G), \quad \lambda \in \mathcal{Q}^*(G)$$
(3)

and

$$\alpha^*(\lambda \pi - G) = \alpha^*((\lambda \pi - F) + (F - G)) \le \alpha^*(\lambda \pi - F) + \omega^*(F - G)$$
$$= \omega^*(F - G), \ \lambda \in \mathcal{Q}^*(F). \tag{4}$$

From (1) – (4) we obtain $\gamma(\Omega^*(F), \Omega^*(G)) \leq \omega^*(F-G)$.

4. The numerical range and the B^* -asymptotic spectrum

DEFINITION 4.1. Let $X_0 = X - \{0\}$. A continuous map $P: X_0 \longrightarrow X$ is called B-numerically bounded if the map $F: \Pi_0 \longrightarrow X$ given by F(x, f) = P(x) is B^* -numerically bounded.

In this case the numbers $\omega^*(F)$, $\alpha^*(F)$ and the B^* -numerical range $\Omega^*(F)$ are denoted by $\omega(P)$, $\alpha(P)$ and $\Omega(P)$ respectively.

We denote by W(X) the vector space of all B-numerically bounded maps on X_0 . Notice that W(X) can be considered, in a natural way, as a vector subspace of $W^*(X)$, and that ω is a seminorm on W(X). Obviously one has $B(X) \subset Q(X) \subset W(X)$ and $\omega(P) \leq |P| \leq |P|$.

PROPOSITION 4.1. If
$$T \in L(X)$$
, then
(a) $\Omega(T) = \overline{W_B(T)}$.

(b) $\omega(T) = \omega_B(T)$, where $\omega_B(T)$ denotes the B-spatial numerical radius of T[7].

Proof. Obvious.

Definition 4.2. For any $F \in Q^*(X)$, we define

$$d^*(F) = \lim_{r \to \infty} \inf_{N_r} \frac{||F(x, f)||_X}{||x||_X},$$

and the B^* -asymptotic spectrum $\Sigma^*(F)$ of F, as the set $\Sigma^*(F) = \{\lambda \in \mathbb{C} : d^*(\lambda \pi - F) = 0\}$ where π denotes the natural projection of $X \times B^*$ onto X. It is easy to show the following properties; If $F, G \in Q^*(X)$ and $\mu \in \mathbb{C}$, then

- (a) $0 \le d^*(F) \le |F|^*$.
- (b) $d^*(\mu F) = |\mu| d^*(F)$
- (c) $d^*(F+G) \leq d^*(F) + |G|^*$.
- (d) $d^*(F) |G|^* \le d^*(F+G)$
- (e) $|d^*(F)-d^*(G)| \le |F-G|^*$.
- (f) $d^*(F) \leq |\lambda|$, $\lambda \in \Sigma^*(F)$.

PROPOSITION 4.2. If F, $G \in Q^*(X)$ and $\mu \in \mathbb{C}$, then

- (a) $\Sigma^*(F) \subseteq \Omega^*(F)$.
- (b) If $|F-G|^*=0$, then $\Sigma^*(F) = \Sigma^*(G)$.
- (c) $r^*(F) \le |F|^*$, where $r^*(F) = \sup\{|\lambda| : \lambda \in \Sigma^*(F)\}$ is the B*-asymptotic spectral radius of F.
 - (d) $\sum^*(F)$ is compact.
 - (e) $\Sigma^*(\mu F) = \mu \Sigma^*(F)$.
 - (f) $\Sigma^*(\mu\pi+F) = \mu + \Sigma^*(F)$.

Proof. (a) It follows from the obvious inequality $\alpha^*(F) \leq d^*(F)$ and Proposition 3.3.

- (b) Immediate from the previous remark (e).
- (c) Let $\lambda \in \Sigma^*(F)$. By the previous remark (d) we have

$$|\lambda| - |F|^* \leq d^*(\lambda \pi - F) = 0.$$

(d) By the previous remark (e), the mapping $\lambda \longrightarrow d^*(\lambda \pi - F)$ is continuous and hence $\Sigma^*(F)$ is closed. By (c) it is bounded and hence compact.

References

- 1. F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, Cambridge University Press, London, 1971.
- 2. J. A. Canavati, A theory of numerical range for nonlinear operators, J. Functional Analysis 33 (1979), 231-258.
- 3. M. Furi and A. Vignoli, A nonlinear spectral approach to surjectivity in

Banach spaces, J. Functional Analysis 20 (1975), 304-318.

- 4. P. R. Halmos, A Hilbert space problem book, Springer-Verlag, New York, 1982.
- K. Kuratowski, Introduction to set theory and topology, 2nd ed., Pergamon Press, London/New York, 1972.
- 6. W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
- 7. Youngoh Yang, A note on the numerical range of an operator, Bull. Korean Math. Soc. 21 (1984), 27-30.

Pusan National University Pusan 607, Korea and Korea Naval Academy Jinhae 602, Korea