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ON THE NUMERICAL RANGE FOR NONLINEAR
OPERATORS

KYoNG Soo KiM AND YOUNGOH YANG

1. Introduction

Let B be a unital C*-algebra, B#¥ the dual space of B, and X the Hilbert B-
module with a B—lvalued inner product {,> [6]. We define the norm ||-||x on X
by llzllx={{z, )]|2. Then for any bounded linear operator T on X, the B-
spatial numerical range Wpg(T) is defined by Wi(T) ={f Tz, o) :z€X,
feB¥ \zllx=lfll=Ff(z, 2>)=1} [7]. In [2], Canavati defined a numerical
range for the class of all numerically bounded (nonlinear) maps on a Banach
space and gave some of the basic properties of such numerical range. In this
paper, we shall define a numerical range for a new class of all B*-numerically
bounded maps on a Hilbert B-module, and study analogous results of it in a
systematic way. Among other properties, our numerical range will be compact
and connected, and will coincide with T, (7), in the particular case when T
is a bounded linear operator on a Hilbert B-module X.

Throughout this paper, a Hilbert B-module X is assumed to have a vector
space structure over the complex numbers € compatible with that of B in the
sense that A(zb) =(Ax)b=x(1b) (z€X, beB, 1=(C). We will use the following
notations. L(X) is the Banach space of all bounded linear operators on X.
B(X) is the vector space of all continuous maps P:X—> X such that
NP)|x=Mlx|lx for some M=0 and all z in X. An element of B(X)
is called a bounded map on X. @(X) is the vector space of all quasibounded
maps on X [2], [3]. We also denote the operator norm on L(X) by || - |.

2. Some Banach spaces of nonlinear maps,

In [7], the norm X weak* topology in X X B# is defined as the product topology
in XX B* given by the norm topology on X and the weak* topology on B¥. We
consider the following subsets of XX B#*. II,={(x, f)eXXB* |zllx=I|fll=r,
flz, ) =izl|x% for r>0, and 1]0=’L>JOII,.

The following two results are essenstially due to Bonsall, Cain and Schneider
[1]. We omit the proofs of them,~because they would be similar as in [2].

LEMMA. Let n denote the natural projection of XX B¥ onto X, and let A be a
subset of I, that is relatively closed in II, with respect to the norm X weak¥®
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topology. Then n(A) is a norm closed subset of X.

PROPOSITION 2.1. Each ,(r>>0) and Il are connected subsets of XX B¥ with
the normXweak* topology, unless X has dimension one over R.

From now on we shall assume that /7, has the norm X weak* topology induced
as a subset of XX B¥, Also we shall assume that X does not have dimension
one over R,

DEFINITION 2.1. A continuwous map F : [y —> X is called B*~bounded if ||F||*

=S},1p—lm(I"Jr—J’CIJI;)MX—<OO. We denote by B*((X), the vector space of all B*-

bounded maps. Notice that || - ||* is a norm on B*(X) and B*(X) is a Banach
space. We can consider the vector space B(X) as a vector subspace of B*(X)
in a natural way, namely; if P€B(X), then the mapping F(z,f)=P(z)
belongs to B*(X) and ||P|I=||F|i* [2].

DEFINITION 2.2. A continuous map F: I, —> X is called B*-quasibounded if
WF(x, F)llx
B

We denote by @*(X), the vector space of all B*-quasibounded maps. Notice
that | + |* is a seminorm on Q*(X). Obviously one has B*(X)c@Q*(X) and
|FI*<||F|I*. We can consider the vector space @(X) as a vector subspace of
Q*(X) in a natural way, namely; if P€Q(X), then the mapping F(z, f)=
P(x) belongs to ©@*(X) and |P|={F|*. Here | - | is a seminorm on Q@(X) [2],
[3].

PROPOSITION 2.2. For any FEQ*(X), there exists a sequence {F,} in B*(X)
such that |F,—F|*=0 (n=1,2,3,...) and |[F,||¥ —> |F|* as n —> co,

Proof. Let p?=|lz||x®>+|| f11%, and define F,(z, f)=F(z. f) if p=n, F,(z,f)

=~7‘.;—F (%x, —Z—f) if 0<p<la. We have

[ Fulj*= SUPMX = SUDMJC—"-ﬂK—. Therefore F,eB*(X) for all a
WP Tl b Jally

large enough and ||F,lj* —> |F|* as n —> oo.

|F|*=lim sup
rsco Hr

DEFINITION 2.3. Let F, GEQ*(X). The mapping F is said to be B*-asympto-
tically equivalent to G if |F—G|*=0. It is easy to see that this is an equivalence
relation.

@*(X) is the normed space of all equivalence classes of E*-quasibounded maps,
e, @*(X)=Q*(X)/N(| - |*), where N(| - |*) ={FeQ*(X) : |F|*=0}. The
norm on @*(X) is the one induced by | - |* and will be denoted in the same
way.
From Proposition 2.2, we see that the mapping B*(X) — Q*(X), F—> F is
onto.
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PROPOSITION 2.3. Q*(X) is a Banach space.

Proof. Let {F,}) be a sequence in O*(X) such that 33 ([, |*<co. We have to
show that 3} F, converges. By Proposition 9. 2, for any positive integer n we
can choose G,&B*(X) such that G,=F, and |G,||*<|F,|*+27" Since B¥*(X)
is a Banach space, X G, converges to an element G&B* (1\) From the contmmty
of the linear projection B*(X) —> @*(X) we obtain 2] G,=xTI,=

DEFINITION 2.4. A continwous map F:Ily,—> X is called B¥*-numerically
bounded if
€ _1 IfF(z, f), ©)]
o=l e
We denote by W*(X), the vector space of all B*~numerically bounded maps.
Notice that w* is a seminorm on W*(X). If FE W*(X), then we let
*F~1 f|f(<F(xf) l>)|.
o (F) =lm Inf == a7l
Obviously one has Q*(X)C W*(X) and o*(F)=|F|*.

DEFINITION 2.5. Let FE W*(X) and consider the maps F,:ll,—> X and

F,: Iy —> X given by F.(z, f)= f(<fx(\i;2f\3‘,‘]x>)
F.(z, f)=F(z, f)—F,(z, f). Then F=F,+F.. The maps F, and F. are called
the normal and tangent components of F respectively. It is easy to show that if

Few*(X), then
(a) fIF.(z, 1), ) =f(F(, ), ©), (x, )€l

(b) fUF. (2, ), 3)=0, (z, f) €<,
(¢) F,eQ*(X) and |F,|*=0*(F). Hence we obtain the following result.

x and

PROPOSITION 2.4. FEW*(X) if and only if there exists continuous mappings
G, H: Il,— X with GEQ*(X) and H satisfying f((H(z, f),z>)=0 ((x,f)E
o) such that F=G+H. Such a map H is called a B*-ovrthogonal map.

DEFINITION 2.6. Let F,G& W*(X). The mapping F is said to be B*-asympto-
tically numerically equivalent to G if o*(F—G)=0. It is easy to see that this is
an equivalence relation. W*(X) is the normed space of all equivalence classes
of B*-numerically bounded maps, i.e., W*(X)=W*(X)/N(w*), where F&
N(o*) iff @*(F)=0. The norm on W#*(X) is the one induced by ¥, and it
will be denoted in the same way.

PROPOSITION 2.5. W*(X) is a Banach space.

Proof. Let {ﬁ} be a sequence in IA’*(X) such that Se*(F,) < co. We have
to show that X [, converges. Since w* (F)=w*(F) =|F,|*=|F,|*(Fe W*(X)),
where F,€Q*(X) is the normal component of F, then we have

DIF 1 *=Rat (F,) oo o)
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But {F,)} is a sequence in the Banach space @*(X), and it follows from (@)
and Proposition 2.3 that the series 2 F,, converges to F e@*(X). Since the
mapping r: §*(X) —> W*(X), F—> F is linear and continuous we must have

LFu=LrF)=r@®=F. ©)
But F=ﬁ’, for Fe W*(X). Hence from (2) we obtain ¥} F,=F.

3. The B*-numerical range.

DEFINITION 3.1. Let FEW*(X) and consider the continuous map ¢r : ly—>
C given by

_ Rz, f), )
or (@ F) =S

We define the B*-numerical range Q*(F) of F as the set Q* (F)=|’>70¢F(1]r). In

other words, A€Q*(F) if and only if there exists a sequence {(z,, fD} in 1T,
such that ||z,|lx=#» and

SollF (s, fo)s Ta)
Hlzall 2l Fall

PROPOSITION 3.1. If Fe W*(X ), then Q¥(F) is a nonempty compact connected
subset of C.

—> 1 as n —> oo,

Proof. Since FEW*(X), then the sets ¢r(/T,) are bounded for all >0 large
enough. Now {¢r(I,)} is a nested family of compact nonempty sets, therefore
by Cantor’s theorem Q*(F )#¢ and is compact. Now from Proposition 2.1 we
have that each §.(7,) is a connected subset of C. Thus Q*(F) being an
intersection of a nested family of compact connected sets is connected as well.

The following properties of the B*~numerical range are easy to check.

ReMARK. If F, GE W*(X) and A€C, then

(@) @*(F,)=0*(F) and 0*(F,)={0}.

(b) O*(AF) =20%(F).

(©) @*(Az+F) = A+ Q*(F), where 7: XXB% —> X denotes the natural
projection.

(d) Q*(F+G) SQ*(F) +0%(G).

(&) o*(F)=max {|1] 1 A€0Q*(F)}. We call @*(F) the B*-numerical radius
of F.

ProposITION 3.2. If F,Ge W*(X) and o*(F—G) =0, then 0* (F)=0%(G).

Proof. From the above Remark, we have 0% (F)=Q%*(F,) and 2*(G) =9*(G,).
Also from Remark after Definition 2.5 we have |F,—G,|*=w*(F—G) =0, We
shall show that Q*(F,)=g* (G,). Let A€Q*(F,). Then there exists a sequence
{(zs, fa)} in I, such that llZallx=n and

In (<Fv (»Tm Su), 1‘,,>)
lall x 2] full

—> 1 as n —> oc,
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Now
f2(Golam fa), z)) _ [u((G—F,) (xp, fa)s Zw)) . [fu(F(Zn, Su), Tn))
lzall 22l £ll llall 1] £ull Hzallx2 fall )
But

Lf2({(Gy—F.) (xn, fa), Zw)) | < (Gy=F,) (2 fu)llx

llzall %] fall sl x
and |G,—F,|*=0 imply

f2({(Gy=F,) (Xps fu)s Zo)
IEMPEAL —>0 @

Hence from (1) and (2) we see that
fn (<GV (xm fn) 3 xn>)
lzall 22 £l
Therefore Q*(F,)S0*(G,). The inclusion Q*(G,)SQ*(F,) is proved in the same
way.

PROPOSITION 3.3. If FeW*(X), then (a) a*(ur—F)=dist (u, Q¥(F)),
neC.
(b) Q*(F)={1eC: a*(Ax—F)=0}.

—> 1 as n—> oo,

Proof. (a) We shall show a little more, namely; that for any p&C, there
exists A€Q*(F) such that a*(ur—F)=|pg—2|. By definition of a*(ux—F),
there is a sequence {(z,, f»)} in X, such that ||z,l|x=#7 and

I fo (e —F) (2, fo), Tap) | o
a2l £l —> a*(ur—-F) 6)

Since FE W*(X), without loss of generality we may assume that the sequence

{ So(SF (zn, f2), Zn))

ENEIEA] } is convergent to some A€ Q*(F).
nll X n

Thus from (1) we obtain a*(uz—F) =|u—2|.

(b) Let A={A€C: a*(Ax—F)=0}. Then from (a) we have ASQ*(F). Now
let AcQ*(F). Then there is a sequence {(z,, f,)} in [, such that {|z,|/lx=# and
JallF (@n fo)y 2w)) | 2

llzall 2?1 fall
follUn=F) (x4, f2), Zw))

This in turn implies that EAFIEA —> (), and hence that
a*(Az—F)=0. Therefore 24 and Q*(F) & A.

PrROPOSITION 3.4. Let F, Ge W*(X) and p€C. Then
(a) 0=Za*(F)=o*(F).
(b) a*(uF)=|ula*(F).
(c) a*(F+G)=a*(F)+o*(G)
(d) a*(F)—o*(G) Sa*(F+G)
(e) |a*(F)—a*(G)|Zw*(F—G). So a* is actually defined in W*(X).
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(f) a*(F)<|A] if A€Q*(F).
Proof. (a) an (b) follow from the definitions.

LfK(F+G) (z, ), 22) ]

(c) a*(F+G) =l£m ilrllf

Tl
U CFG £ i) ] v o LG, £, 2]
e e B N EFin]
=a*(F) +w*(G).

(d) It follows from (c).
(e) We have from (¢) a*(F)=a*(F—-G+G)<o*(F~G)+a*(G). Hence
|a*(F) —a*(G) | £o*(F-G).
(f) From (d) and Proposition 3.3 (b) we have
oM (F)y— (] Sa*(An—F)=0, A€Q*(").

PropoOSITION 3.5. If F,Ge W*(X), then v (2%(F), 0%(G)) =w*(F—G). Here
1 is the Hausdor[f metric in I'(C), which denotes the set of all non—void closed
bounded subsets of (C,d).

Proof. We have
y(Q*(F), 2%(G)) =max{sup{dist(2, Q*(F)) : 2&€Q*(G)},
sup{dist (2, @*(G)) : A€Q*(F)}}. (0
and from Proposition 3.3
dist (4, Q*(F))=a*(Az—F), dist (4, Q*(G)) <a*(Az—06). (2)
Also Proposition 3.3 and 3.4 (¢) imply
a*(Ax—F)=a*((An—G) +(G—F)) <a*(An—G) + 0*(G—F)
=0*(F-G), 2€9*(G) (3
and
a*(An—G) =a*((Az—F)+ (F-G)) Za*(Az—F) +0*(F—G)
=w*(F—G), A€Q*(F). @
From (1) —(4) we obtain y(Q*(F), 0%(®)) Sw*(F-G).

4. The numerical range and the B*-asymptotic specirum

DEFINITION 4.1. Let Xo=X—{0}. A continuous map P : Xo—> X is called
B-numerically bounded if the map F: ll, —> X given by F(x, f)=P(x) is B*-
numerically bounded.

In this case the numbers w*(F), a*(F) and the B*-nurerical range Q*(F) are
denoted by w(P), a(P) and Q(P) respectively.

We denote by W(X) the vector space of all B-numerically bounded maps on
Xo. Notice that W(X) can be considered, in a natural way, as a vector subspace
of W*(X), and that o is a seminorm on W(X). Obviously one has B(X)cC
RX)cW(X) and w(P)< |P|=||P|.

PROPOSITION 4.1, If TeL(X), then
(@) Q(T)=W;s(T).
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(b) w(T)=ws(T), where wp(T) denotes the B-spatial numerical radius of
7.

Proof. Obvious. A
DEFINITION 4.2. For any FEQ*(X), we define
d*(F)=lim inf HF(ﬁ-', Hf) llx ,
Ir

roc0 Xlx

and the B*-asymptotic spectrum T*(F) of F, as the set N*(F)={le(C:
d*(Ar—F) =0} where = denotes the natural projection of XX B¥ onto X.
It is easy to show the following properties; If F,GeQ*(X) and p¢=C, then

(a) OSd*¥(F)Z|F|*

(b) @*(uF)=|p|d*(F)

(c) d*(F+G) =d*(F)+|G|*.

(d) d*(F)—|Gi*sd*(F+G)

(e) |d*(F)—d*(G)|<|F-G|*.

(D d¥(F)< (2|, 2e X*(F).

PROPOSITICN 4.2. If F, GeQ*(X) and neC, then

(@) Z*F)SQ*(F).

(b) If |F—G|*=0, then *(F)=X*(G).

() r*(F)S|F|*, where r*(F)=sup{|i] : A&Z*(F)} is the B*-asymptotic
spectral radius of F.

(d) X*(F) is compact.

(&) Z*(uF)=p Z*(F).

() ¥ un+F)=p+3%(F).

Proof. (a) It follows from the obvious inequality a*(F) < d*(F) and
Proposition 3. 3.

(b) Immediate from the previous remark (e).

(c) Let A€ 3 *(F). By the previous remark (d)we have

[2| = |F|*<d*(Az—F) =q.
(d) By the previous remark (e), the mapping A —> d*(iz—F) is continuous
and hence 1*(F) is closed. By (c) it is bounded and hence compact.
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