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GLOBAL CONSTANCY PRINCIPLE FOR MIZOHATA
OPERATORS

Donan KM

Introduction

In [1] L. Nirenberg constructed a famous example of a smooth vector field
which have only the constant functions as solutions in an open subset of the
plane. Explanations of this phenomenon have been proposed in Treves [3] and
Sjéstrand [2]. The explanation in [3] is related to the following so-called “local
constancy principle”.

(L) If a C! solution # of Lu=0 with du+0 exists, then, locally, any other
C! solution % of this equation is constant on each set on which z is con-
stant.

In this short paper we shall obtain a sufficient condition for the validity of a

global version of the local constancy principle (L) for Mizohata operators M;.

Throughout this paper let M, (%, odd) be the vector field in an open subset

Q of R?

o) My=—g it

We now give a sufficient condition on Q for a Mizohata operator M; of the
form (1) to satisfy the following global version of the local constancy principle
L:

G Let # be a C! solution of

@ M, u=0

in @ with du=0. Then any other C! solution % of (2) in © is constant on

#1(2) for every fixed zcu(0Q).

Note that there exists a C* function » of (2) in Q with du#0 for all weQ.
For example one may take

kL
U=g—i———,
k+1
We denote by «* and u~ the restrictions of # to QF and Q- respectively.

PROPOSITION 1. Let u be a solution of (2) in Q with du{w)#0. Then the
Jacobians of ut and u~ are nonvanishing in Q and Q-, respectively.

Proof: Since Re u#,=»* Im u, and Im u,=—y* Reu,
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DReste I = — 54 (Re )™+ (Im 1))

L (Re )%+ (Im #,)?).

REMARK. ut(u~, resp.) in Proposition 1 is a local diffeomorphism from
Q+ (9, resp.) into C.

Before stating the main theorem, let us examine the following crucial example.

EXAMPLE. Let  be the S-shaped domain in R?, shown in Fig.1 and consider
9 .

0 . 0 .
M= 3y iy —in Q.
Take the solution z=x+iy?/2 of Mu=0.
AY
Almu
3 X » e
.
Fig. 1

Clearly du does not vanish in Q. Then « maps onto the annulus shaped domain
in C in Fig. 1. Put
u(@D) Nu(Q)=AUB

with A, B indicated in Fig. 1. Note that the closure of A contains the line
segment " which is the image of Qy={(z,y) €Q|y=0} under the mapping =.

Let £ be any other C! solution of Mu=0 and let 2* be the restriction of % to
Q*. Then we can form A*=h*oy™), since w* is a diffeomorphism of Q* onto
#(Q%). Thus A* is defined in u(Q%). Since d(h*du)=— (Mh*)dz/\dy=0 in Q%
we have d(h*dz) =0 in «(Q%). In other words, A* is holomorphic in z(Q%). As
z approaches any point in I" h(2) =h*(z) —h~(2) tends to zero. Therefore by
analytic continuation we must have £(z) =0, i.e., At (2) ==/ (2) in A. However,
k* and £~ do not have to coincide in B. Examples of this type can be easily
constructed.
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This example shows us that the connectedness of #(Q%) Nu(27) is crucial for
(G) to be true. We now prove that this condition is sufficient for (G).

THEOREM 1. Let Q be an open subset of R? and u be a solution of (2) with
du=0 in Q, u* and uw~ injective in QF and Q~, respectively. Suppose that u(Q*)
Nu(Q™) is connected. Then (G) holds for M.

Proof. Put G=u(") Nu(Q™). Then the closure of ¢ contains I'=u(Qy). Set
V= (u*)~1(G). Call A* the restriction of & to V*. Since #* is a diffeomorphism of
V* onto G, we put i*=h*c (u*) L and h=h*—h~ in G. Since d (h*du) = — (M;h*)
dxr dy=0 in V* we have d(h*dz) =0 in G. Hence h*, b~ and % are holomorphic
in G. However k(z) tends to 0 as z approaches some point on /. Since I’
contains a nonempty open arc f=0 in G by analytic continuation. In other
words, Atouwl=hou"! in G.
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