GLOBAL CONSTANCY PRINCIPLE FOR MIZOHATA OPERATORS

DOHAN KIM

Introduction

In [1] L. Nirenberg constructed a famous example of a smooth vector field which have only the constant functions as solutions in an open subset of the plane. Explanations of this phenomenon have been proposed in Treves [3] and Sjöstrand [2]. The explanation in [3] is related to the following so-called "local constancy principle".

(L) If a C^1 solution u of Lu=0 with $du\neq 0$ exists, then, locally, any other C^1 solution h of this equation is constant on each set on which u is constant.

In this short paper we shall obtain a sufficient condition for the validity of a global version of the local constancy principle (L) for Mizohata operators M_k .

Throughout this paper let M_k (k, odd) be the vector field in an open subset Q of R^2

$$M_{k} = \frac{\partial}{\partial y} + iy^{k} \frac{\partial}{\partial x}.$$

We now give a sufficient condition on Ω for a Mizohata operator M_k of the form (1) to satisfy the following global version of the local constancy principle (L):

(G) Let
$$u$$
 be a C^1 solution of

$$(2) M_k u = 0$$

in Ω with $du\neq 0$. Then any other C^1 solution h of (2) in Ω is constant on $u^{-1}(z)$ for every fixed $z\in u(\Omega)$.

Note that there exists a C^{∞} function u of (2) in Ω with $du \neq 0$ for all $\omega \in \Omega$. For example one may take

$$u=x-i-\frac{y^{k+1}}{k+1}$$
.

We denote by u^+ and u^- the restrictions of u to Q^+ and Q^- , respectively.

PROPOSITION 1. Let u be a solution of (2) in Ω with $du(\omega) \neq 0$. Then the Jacobians of u^+ and u^- are nonvanishing in Ω^+ and Ω^- , respectively.

Proof: Since Re $u_y = y^k$ Im u_x and Im $u_y = -y^k$ Re u_x

$$\frac{\partial (\operatorname{Re} u, \operatorname{Im} u)}{\partial (x, y)} = -y^{k} ((\operatorname{Re} u_{x})^{2} + (\operatorname{Im} u_{x})^{2})$$
$$= -\frac{1}{v^{k}} ((\operatorname{Re} u_{y})^{2} + (\operatorname{Im} u_{y})^{2}).$$

REMARK. $u^+(u^-, \text{ resp.})$ in Proposition 1 is a local diffeomorphism from $\Omega^+(\Omega, \text{ resp.})$ into C.

Before stating the main theorem, let us examine the following crucial example.

EXAMPLE. Let Ω be the S-shaped domain in R^2 , shown in Fig. 1 and consider

$$M = \frac{\partial}{\partial y} - iy \frac{\partial}{\partial x}$$
 in Ω .

Take the solution $u=x+iy^2/2$ of Mu=0.

Fig. 1

Clearly du does not vanish in Ω . Then u maps onto the annulus shaped domain in C in Fig. 1. Put

$$u(Q^+) \cap u(Q^-) = A \cup B$$

with A, B indicated in Fig. 1. Note that the closure of A contains the line segment Γ which is the image of $\Omega_0 = \{(x, y) \in \Omega | y = 0\}$ under the mapping u.

Let h be any other C^1 solution of Mu=0 and let h^\pm be the restriction of h to Ω^\pm . Then we can form $\tilde{h}^\pm = h^\pm \circ u^{-1}$, since u^\pm is a diffeomorphism of Ω^\pm onto $u(\Omega^\pm)$. Thus \tilde{h}^\pm is defined in $u(\Omega^\pm)$. Since $d(h^\pm du) = -(Mh^\pm) dx \wedge dy = 0$ in Ω^\pm , we have $d(\tilde{h}^\pm dz) = 0$ in $u(\Omega^\pm)$. In other words, h^\pm is holomorphic in $u(\Omega^\pm)$. As z approaches any point in $I^ \tilde{h}(z) = h^+(z) - \tilde{h}^-(z)$ tends to zero. Therefore by analytic continuation we must have $\tilde{h}(z) = 0$, i.e., $\tilde{h}^+(z) = \tilde{h}^-(z)$ in A. However, \tilde{h}^+ and \tilde{h}^- do not have to coincide in B. Examples of this type can be easily constructed.

This example shows us that the connectedness of $u(\Omega^+) \cap u(\Omega^-)$ is crucial for (G) to be true. We now prove that this condition is sufficient for (G).

THEOREM 1. Let Ω be an open subset of R^2 and u be a solution of (2) with $du \neq 0$ in Ω , u^+ and u^- injective in Ω^+ and Ω^- , respectively. Suppose that $u(\Omega^+) \cap u(\Omega^-)$ is connected. Then (G) holds for M_k .

Proof. Put $G=u(\Omega^+)\cap u(\Omega^-)$. Then the closure of G contains $\Gamma=u(\Omega_0)$. Set $V^\pm=(u^\pm)^{-1}(G)$. Call h^\pm the restriction of h to V^\pm . Since u^\pm is a diffeomorphism of V^\pm onto G, we put $\tilde{h}^\pm=h^\pm\circ(u^\pm)^{-1}$ and $\tilde{h}=\tilde{h}^+-\tilde{h}^-$ in G. Since $d(h^\pm du)=-(M_kh^\pm)$ dx dy=0 in V^\pm we have $d(\tilde{h}^\pm dz)=0$ in G. Hence \tilde{h}^+,h^- and \tilde{h} are holomorphic in G. However $\tilde{h}(z)$ tends to 0 as z approaches some point on Γ . Since Γ contains a nonempty open arc $\tilde{h}=0$ in G by analytic continuation. In other words, $h^+\circ u^{-1}=h^-\circ u^{-1}$ in G.

References

- 1. L. Nirenberg, Lectures on linear partial differential equations, Reg. Conf. Series in Math. No. 17, Amer. Math. Soc. 1973.
- 2. J. Sjöstrand, Note on a paper of F. Treves concerning Mizohata type operators, Duke Math. J. 47 (1980), 601-608.
- 3. F. Treves, Remarks about certain first order linear PDE in two variables, Comm. in PDEs, 54 (1980), 381-425.