A LEMMA ON AN INFINITESIMAL ETA-CONFORMAL TRANSFORMATION IN A COMPACT SASAKIAN MANIFOLD

SANG-SEUP EUM

1. Introduction

A (2n+1)-dimensional differentiable manifold M is called to have a Sasakian structure if there is given a positive definite Riemannian metric g_{ji} and a triplet $(\phi_k{}^j, \xi^j, \eta_k)$ of (1, 1) type tensor field $\phi_k{}^j$, vector field ξ^j and 1-form η_k in M which satisfy the following equations

(1.1)
$$\phi_{j}^{i}\phi_{i}^{h} = -\gamma_{j}^{h}, \quad \phi_{j}^{i}\xi^{j} = 0, \quad \eta_{i}\phi_{j}^{i} = 0, \quad \eta_{i}\xi^{t} = 1,$$

$$g_{ij}\phi_{j}^{i}\phi_{i}^{t} = \gamma_{ii}, \quad \eta_{i} = g_{ik}\xi^{h},$$

where

$$\gamma_{ii} = g_{ii} - \eta_i \eta_i, \quad \gamma_i{}^h = g^{ht} \gamma_{jt}$$

and

(1.3)
$$\nabla_i \xi^h = \phi_i^h, \quad \nabla_j \phi_i^h = -g_{ji} \xi^h + \delta_j^h \eta_i,$$

where ∇_k indicates the covariant differentiation with respect to g_{ji} . By virtue of the last equation of (1.1), we shall write η^h instead of ξ^h in the sequel. The indices h, i, j, k, \ldots run over the range $\{1, 2, \ldots, 2n+1\}$.

In a (2n+1)-dimensional Sasakian manifold M, if an infinitesimal transformation v^h satisfies

$$(1.4) L_{v}g_{ji} = \lambda(g_{ji} + \eta_{j}\eta_{i}),$$

where λ is a scalar field and L_v denotes the Lie derivation with respect to v^h , then v^h is called an *infinitesimal eta-conformal transformation*.

Recently, K. Takamatsu and H. Mizusawa proved in [1] the following theorem on the case of dim M>3.

THEOREM. If a compact Sasakian manifold M admits an infinitesimal eta-conformal transformation v^h defined by (1.4), then λ in (1.4) vanishes.

The purpose of the present paper is to prove the theorem above stated on the case of dim M=3.

2. Proof of the theorem on the case of dim M=3

In a Sasakian manifold M, the following equations are satisfied (cf. [2]).

(2.1)
$$\eta^k K_{kji}{}^t = \eta^t g_{ji} - \eta_i \delta_i{}^t,$$

and

$$(2.2) K_{kji}^{t} \eta_{t} = g_{ji} \eta_{k} - g_{ki} \eta_{j},$$

where K_{kji}^{t} is the curvature tensor of M.

From (2.1), we easily have

(2.3)
$$\eta^{k} K_{kji}^{t} L_{v} \eta_{t} = g_{ji} \eta^{t} L_{v} \eta_{t} - \eta_{i} L_{v} \eta_{j}.$$

Substituting (1.4) into the formula (cf. [3])

where $\begin{pmatrix} h \\ j \end{pmatrix}$ is the Christoffel symbol formed with g_{ji} , we get

$$(2.4) L_v \begin{Bmatrix} h \\ j i \end{Bmatrix} = \frac{1}{2} \left\{ \lambda_j (\delta_i^h + \eta^h \eta_i) + \lambda_i (\delta_j^h + \eta_j \eta^h) - \lambda^h (g_{ji} + \eta_j \eta_i) \right\} + \lambda (\eta_j \phi_i^h + \eta_i \phi_j^h),$$

where we have put $\lambda_i = \nabla_i \lambda$ and $\lambda^h = g^{ht} \lambda_t$.

Substituting (2.4) into the formula (cf. [3])

$$L_v K_{kji}{}^h = \nabla_k L_v \begin{Bmatrix} h \\ j & i \end{Bmatrix} - \nabla_j L_v \begin{Bmatrix} h \\ k & i \end{Bmatrix},$$

we obtain

$$(2.5) \qquad L_{v}K_{kji}{}^{h} = \frac{1}{2} \left\{ \phi_{k}{}^{h}\lambda_{i}\eta_{j} - \phi_{j}{}^{h}\lambda_{i}\eta_{k} + 2\phi_{i}{}^{h}(\lambda_{k}\eta_{j} - \lambda_{j}\eta_{k}) \right. \\ + \left. \left(\mathcal{F}_{k}\lambda_{i} \right) \left(\delta_{j}{}^{h} + \eta^{h}\eta_{j} \right) - \left(\mathcal{F}_{j}\lambda_{i} \right) \left(\delta_{k}{}^{h} + \eta^{h}\eta_{k} \right) \\ - \left. \left(\mathcal{F}_{k}\lambda_{i} \right) \left(g_{ji} + \eta_{j}\eta_{i} \right) + \left(\mathcal{F}_{j}\lambda_{i} \right) \left(g_{ki} + \eta_{k}\eta_{i} \right) \right. \\ + \left. \lambda^{h} \left(\eta_{k}\phi_{ji} - \eta_{j}\phi_{ki} - 2\eta_{i}\phi_{kj} \right) + \eta^{h} \left(\lambda_{j}\phi_{ki} \right. \\ - \left. \lambda_{k}\phi_{ji} + 2\lambda_{i}\phi_{kj} \right) + \lambda_{k}\eta_{i}\phi_{j}{}^{h} - \lambda_{j}\eta_{i}\phi_{k}{}^{h} \\ + 4\lambda\eta_{i} \left(\eta_{j}\delta_{k}{}^{h} - \eta_{k}\delta_{j}{}^{h} \right) + 2\lambda\eta^{h} \left(\eta_{k}g_{ji} - \eta_{j}g_{ki} \right) \\ + 2\lambda \left(\phi_{ki}\phi_{j}{}^{h} - \phi_{ji}\phi_{k}{}^{h} + 2\phi_{kj}\phi_{i}{}^{h} \right) \right\}.$$

Transvecting (2.5) with η_h , we obtain

(2.6)
$$\eta_{h}L_{v}K_{kji}^{h} = \frac{1}{2} \left\{ 2\eta_{j}\nabla_{k}\lambda_{i} - 2\eta_{k}\nabla_{j}\lambda_{i} - \eta_{h}(\nabla_{k}\lambda^{h})\left(g_{ji} + \eta_{j}\eta_{i}\right) + \eta_{h}(\nabla_{j}\lambda^{h})\left(g_{ki} + \eta_{k}\eta_{i}\right) + \lambda_{j}\phi_{ki} - \lambda_{k}\phi_{ji} + 2\lambda_{i}\phi_{kj} - \eta_{h}\lambda^{h}(\eta_{j}\phi_{ki} - \eta_{k}\phi_{ji} + 2\eta_{i}\phi_{kj}) + 2\lambda(\eta_{k}g_{ji} - \eta_{j}g_{ki}) \right\}.$$

Now taking the Lie derivative of both sides of (2.2), we have

(2.7)
$$K_{kji}{}^{t}L_{v}\eta_{t} + \eta_{t}L_{v}K_{kji}{}^{t} = g_{ji}L_{v}\eta_{k} - g_{ki}L_{v}\eta_{j} + \eta_{k}L_{v}g_{ji} - \eta_{j}L_{v}g_{ki}.$$

Substituting (2.5) and (2.6) into (2.7) and transvecting it with η^k , we obtain

$$(2.8) \qquad \eta^{k}K_{kji}{}^{t}L_{v}\eta_{t} = g_{ji}\eta^{k}L_{v}\eta_{k} - \eta_{i}L_{v}\eta_{j} - \frac{1}{2}\left\{2\eta^{k}\eta_{j}\nabla_{k}\lambda_{i} - 2\nabla_{j}\lambda_{i}\right. \\ \left. - \eta^{k}\eta_{t}(\nabla_{k}\lambda^{t})\left(g_{ji} + \eta_{j}\eta_{i}\right) + 2\eta_{i}\eta_{t}\nabla_{j}\lambda^{t}\right\}.$$

Comparing (2.3) with (2.8), we obtain

$$(2.9) 2\eta^k \eta_j \nabla_k \lambda_i - 2\nabla_j \lambda_i - \eta^k \eta_t (\nabla_k \lambda^t) (g_{ji} + \eta_j \eta_i) + 2\eta_i \eta_t \nabla_j \lambda^t = 0.$$

Transvecting (2.9) with g^{ji} and taking account of the fact that the dimension of M is equal to 3, we obtain $\nabla^i \lambda_i = 0$, and from which

$$(2.10) g^{ji} \nabla_j \nabla_i \lambda = 0$$

by virtue of $\lambda_i = \nabla_i \lambda$.

Thus, in a 3-dimensional compact Sasakian manifold M, we see that (cf. [3])

$$(2.11) \lambda = const.$$

in whole manifold M.

On the other hand, we obtain

$$2\nabla_t v^t = g^{ji} L_v g_{ji} = 4\lambda$$

by virtue of (1.4). Then by Green's theorem and (2.11), we see that $\lambda=0$.

Thus we are done.

References

- 1. K. Takamatsu and H. Mizusawa, On infinitesimal CL-transformations of compact normal contact metric spaces, Jour. Fac. Sci. Niigata Univ. Ser. A (1966), 31-39.
- K. Yano, On contact conformal connections, Kōdai Math. Sem. Rep. 28 (19 76), 90-103.
- 3. _____, Differential geometry on complex and almost complex spaces, 1965, Pergamon Press.

Sung Kyun Kwan University Seoul 110, Korea