ON THE RADIUS OF CONVEXITY OF ANALYTIC P-VALENT FUNCTIONS

SHIGEYOSHI OWA

I. Introduction

Let $\mathcal{O}(\alpha, \beta)$ denote the class of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic and univalent in the unit disk $\mathcal{U} = \{|z| < 1\}$ and satisfy the condition

$$\left| \frac{f'(z) - \beta}{1 - \beta} - \alpha \right| < \alpha \qquad (z \in \mathcal{U})$$

for $\alpha > 1/2$ and $0 \le \beta < 1$.

This class $\mathcal{S}(\alpha, \beta)$ was studied by R. M. Goel and N. S. Sohi [3]. In particular, the class $\mathcal{S}(\alpha, 0)$ was studied by R. M. Goel [1], [2].

Let $\mathcal{O}_p(\alpha)$ denote the class of functions

$$f(z) = z^{p} + \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$$
 ($p \in \mathcal{R}$)

which are analytic p-valent in the unit disk $\mathcal U$ and satisfy the condition

$$\left|\frac{f'(z)}{pz^{p-1}} - \alpha\right| < \alpha \qquad (z \in \mathcal{U})$$

for $\alpha > 1/2$. This class $\circlearrowleft_p(\alpha)$ was studied by N.S. Sohi [4].

In this paper, we consider the analytic p-valent functions

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$$
 $(p \in \mathcal{M})$

in the unit disk $\mathcal U$ satisfying the condition

$$\left|\frac{f'(z) - \beta p z^{p-1}}{p z^{p-1} (1-\beta)} - \alpha\right| < \alpha \qquad (z \in \mathcal{U})$$

for $\alpha > 1/2$ and $0 \le \beta < 1$. We denote the class of all such functions f(z) by $\circlearrowleft_p(\alpha,\beta)$. The class $\circlearrowleft_1(\alpha,\beta)$ is the class $\circlearrowleft(\alpha,\beta)$ which was studied by R. M. Geol and N. S. Sohi [3] and the class $\circlearrowleft_p(\alpha,0)$ is the class $\circlearrowleft_p(\alpha)$ which was studied by N. S. Sohi [4].

2. Radius of convexity for the class S_p (α, β)

THEOREM. Let a function

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \qquad (p \in \mathcal{H})$$

be in the class $\beta_p(\alpha, \beta)$ with $1/2 < \alpha \le 1$ and $0 \le \beta \le 1/2$. Then the function f(z) is convex in

$$|z| < \frac{\{p(1+A) - A + B\} - \sqrt{\{p(1+A) - A + B\}^2 - 4p^2A}}{2pA}$$

where $A=1/\alpha-1$ and $B=1-\beta+A\beta$.

Proof. Let

$$g(z) = \frac{f'(z) - \beta p z^{p-1}}{\alpha p z^{p-1} (1-\beta)} - 1.$$

Then the function g(z) has modulus at most 1 in the unit disk \mathcal{U} and $g(0) = 1/\alpha - 1$. Further let

$$h(z) = \frac{g(z) - g(0)}{1 - g(0)g(z)},$$

then |h(z)| < 1 for $z \in \mathcal{U}$ and h(0) = 0. Consequently, by using Schwarz's lemma, we have $h(z) = z\phi(z)$, where $\phi(z)$ is an analytic function in the unit disk \mathcal{U} and satisfies $|\phi(z)| \le 1$ for $z \in \mathcal{U}$. Therefore we obtain

$$f'(z) = pz^{p-1} \frac{1 + Bh(z)}{1 + Ah(z)}$$

= $pz^{p-1} \frac{1 + Bz\phi(z)}{1 + Az\phi(z)}$,

where $A=1/\alpha-1$ and $B=1-\beta+A\beta$. On differentiating both sides of the above equality with respect to z logarithmically, we get after some simplifications

$$1 + \frac{zf^{\prime\prime}(z)}{f^{\prime}(z)} = p + \frac{(B-A)\left\{z\phi(z) + z^2\phi^{\prime}(z)\right\}}{\left\{1 + Az\phi(z)\right\}\left\{1 + Bz\phi(z)\right\}} \,.$$

Now, it is well-known that

$$|\phi'(z)| \le \frac{1 - |\phi(z)|^2}{1 - |z|^2}$$

for the analytic function $\phi(z)$ in the unit disk \mathcal{U} . Accordingly we have

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} \ge p - \frac{(B-A)|z|\{|\phi(z)| + |z\phi'(z)|\}}{|\{1 + Az\phi(z)\}\{1 + Bz\phi(z)\}|} \\ \ge p - \frac{(B-A)|z|\{|z| + |\phi(z)|\}\{1 - |z\phi(z)|\}}{(1 - |z|^2)|\{1 + Az\phi(z)\}\{1 + Bz\phi(z)\}|}.$$

Since

$$|\left\{1+Az\phi(z)\right\}\left\{1+Bz\phi(z)\right\}| \geq \left\{1-A\left|z\phi(z)\right|\right\}\left\{1-B\left|z\phi(z)\right|\right\}$$

for $1/2 < \alpha \le 1$ and $0 \le \beta \le 1/2$, we get

On the radius of convexity of analytic p-valent functions

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} \ge p - \frac{(B-A)|z|\{|z| + |\phi(z)|\}\{1 - |z\phi(z)|\}}{(1 - |z|^2)\{1 - A|z\phi(z)|\}\{1 - B|z\phi(z)|\}}$$

$$\ge p - \frac{(B-A)|z|}{(1 - |z|)(1 - A|z|)},$$

because $|\phi(z)| \le 1$ for $z \in \mathcal{U}$ and $0 \le A < B$. The function f(z) will be convex if and only if

$$\operatorname{Re}\left\{1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right\}>0,$$

which is satisfied if

$$pA|z|^2 - \{p(1+A) - A + B\} |z| + p > 0,$$

that is,

$$|z| < \frac{\{p(1+A) - A + B\} - \sqrt{\{p(1+A) - A + B\}^2 - 4p^2A}}{2pA}$$

Finally, let $\beta=0$ and f(z) be defined by

$$f'(z) = pz^{p-1} \frac{1-z}{1-Az}$$

in which case, we can see that

$$\operatorname{Re}\left\{1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right\}=0$$

for

$$z = \frac{\{p(1+A) - A + 1\} - \sqrt{\{p(1+A) - A + 1\}^2 - 4p^2A}}{2pA}$$

References

- 1. R.M. Goel, A class of univalent functions whose derivatives have positive real part in the unit disc, Nieuw Archief Voor Wiskunde, 15(1967), 55-63.
- 2. R.M. Goel, A class of analytic functions whose derivatives have positive real part in the unit disc, Indian J. Math. 13(1971), 141-145.
- 3. R.M. Goel and N.S. Sohi, On a subclass of univalent functions, Tamkang J. Math 10(1979), 151-164.
- 4. N.S. Sohi, A class of p-valent analytic functions, Indian J. Pure Appl. Math. 10 (1979), 826-834.

Department of Mathematics Kinki University Osaka, Japan