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LINEAR MAPPINGS ON LINEAR 2-NORMED SPACES

ALBERT WHITE Jr. AND YEeoL Ji CHo*

The notion of linear 2-normed spaces was introduced by S. Gahler (8,9, i0,
11]), and these spaces have been extensively studied by C. Diminnie, R. Ehret,
S. Gahler, K. Iseki, A. White, Jr. and others.

Let X be a real linear space of dimension greater than 1 and ¢ a recal valued
function on XX X satisfying the [ollowing axioms:

(1) vz, »)=0if and only if & and y are linearly dependent,
(2) v(z, »)=v(y a),

(3) v(ar, y)=lalv(z, ¥), where a is real,

D v, ytz)<v(z, v) vz, 2.

v is called a 2-norm on X and (X, ©v) is called a lincar 2-normed space. Some
of the basic properties of 2-norms are that they are nonnegative and v(e, v “au)
=v(z, y) for every x, y in X and every real a.

Linear 2-normed spaces are special cases of a larger class called 2-metric
spaces. A 2-metric space is a space X with a real-valued nonncgative [unction
d defined on X xXXxX which satisfies the following conditions:

(1a) For each pair of points &, » in X with x+y, there exists a point = in .\
such that d(x, v, 2)+90,

(b) d(z, ¥, 2)==0 whenever at least two of the points x, y, = are cqual,

(2) d(z, 3, 2)=d(z, =, y)=d(y, =, ),

(B d(z, y. 2)<d(z, », w)+d(z, w, z)+d(w, v, 2).

d is called a 2-metric for the space X and (X, d) is called a 2-metric space.
For more details on these spaces, sce [8 9, 10, 11]. If (X, v) is a linear 2-
normed space, then the function d(z, », 2)=v(zr—=, y-z) defines a 2-metric
on X([9]). Every 2-normed space will be considered to he a 2-metric space with
the 2-metric defined in this sense.

For nonzero vectors 2, y in X, let V(z, ») denote the subspace of X gencrated
by x and y. A linear 2-normed space(X,v) is said to be strictly convex ([3]) il
v(zty, 2)=v(r, 2)+v(y+z) and 2¢ V(r, ») imply that y=ax {or some a >(.
Some characterizations of strict convexity for linear 2-normed spaces are given
in {1, 3, 4, 5, 12]. Also, a linear 2-rormed space (X, ) is said (o be strictly 2-
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convex ([6]) if v(z, y) =v(a D) =v(y, ©)=1/3v(xlz, ytz)=1 implies that
z=x-+y. These spaces have been studied in [2, 4, 6, 13]. It is easy to see that
cvery strictly convex linear 2-normed space is always strictly 2-convex but the
converse is not necessarily true. Throughout this paper, let (X, v) denote a
linear 2-normed space.

I. Strict convexity and strict 2-convexity.

In this section, we give some characterizations of strict convexity and strict
2-convexity for linear 2-normed spaces. The following theorem is well-known:

THEOREM 1.1 ([12]). The Jollowing statements are equivalent:
(1) (X,v) is strictly convex.

@) vz, 2)=v(y,2) =1 and = V(x, ¥} imply that v(1/2(x+y), 2)<1.

We will say that a linear 2-normed space (X,v) has the property (P) if for
any &, % 2 in X with 243, v(y, 2) =0v(y, 2)=1 and z¢ Ve, ), we have v(az+
(I1—a@)y, 2)<1 for some real number «.

If M and N are subspaces of X, then a bilinear functional F on MX N is said
to be bounded if there exists a number K>0 such that for every (z,y)€MxN,
|F(x,9) | <Kv(z,y). The norm of F, IFll, is defined by [|Fi|=inf {K; |F(x, |
< Kv(x,y) for every (2,9 in MxN}. Additional informations about bounded
bilinear functionals and the Hahn-Banach theorem type on linear 2-normed spaces
may be found in [7,8,13].

THEOREM 1.2. The Jollowing statements are equivalent:
(1) (X,v) is strictly convex.
(2) (X,v) has the property (P).

Proof. Clearly if (X, v) is strictly convex, then, by Theorem 1.1. the property
(P) holds with a=1/2, so it is enough to prove the converse. For the converse,
it is sufficient to prove that if (X,v) is not strictly convex, then (X,v) does
not have the property (P). Suppose that z, %z in X with 24y, v(e, 2) =v(y, 2)
=v(1/2(x 1 y),2) =1, and 2 V(2,»). By Hahn-Banach theorem type of [13],
there exists a bounded bilinear functional F defined on XX V(2) such that ||F|
=1 and F(1/2(x-Fy), 2) =0 (1/2(x-t», 20 =1. So we have 12K (a, 2) +1/2F (3,
)=l and Flr, ) < I F(a, 2) | < |Flle (e, 2) =1, Fy,2) <|F(y,2) < | Fllv(y, z) =1.
From these properties, it follows that Fle,2)=F(y,z)=1. Therefore, for any
real number a, v(ax- (1-a)y, 2) 2 | Flax - (I=a)y, ) |=|aF(2,2) 4+ (1—a) F(y,
2) =1, aad so the property () fails.

A point p of X is called a 2-norm midpoint of 3 non-collinear points a, b, ¢
in X if d(a.b,p)=d(a, p,c)=d(p,b,¢c)=1/3d(a,b, ¢). For non-collinear a, 5, ¢ in
X, let T(a,b,¢)={xc X d(a,b,¢)=d(a, b, 2)1-d(a, x,¢)4-d(x, b,0)}. T(a,b,c)
will be called the triangle with vertices a, b and . Furthermore, we will designate
the area of T(a,b,¢) to be d(a,b,¢). A point £ of X will be a ceater of T,
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b,¢) if p is a 2-norm midpoint of @, b and ¢. From [6], 7'(a, b, ¢) has a unique
center if and only if (X,v) is strictly 2-convex, and for non~collinear a,b,¢, T
(a,b,¢) is convex. If a,b and ¢ are non-collinear, let C(a, b, ¢) denote the
convex envelope of {a,8,¢}, i.e., C(a,b,c) is the smallest convex set containing
{a,b,¢}. In particular, we will use the result that C(a, 5, c)= {aa--5b- 7¢; a, f,
7, >0 and a+g+y=1}.

THEOREM 1.3 ([6]). The following statements are equivalent:

(1) (X,v) is strictly 2-convex.

(2) If a,b and ¢ are non—collinear, then T(a,b,¢)=C(a,b,c).

(8) If a,b in X with v(a,b)>0, then there exists a urique point ¢ in X such
that 0 is a center of T(a,b,c).

(4) 1f v(a, b)=v(a, ¢)=v{d, ¢)=1, ¢ +—(a+b), @, f. 7>0and atf-+y=1,
then d(aa, b, 7c)<1/3.

II. Continuity of linear mappings

In this scction, we define continuity of linear mappings on lincar 2-normed
spaces and investigate their some properties.

We will say that a sequence {z,} in X converges weakly to a point 2 in X if
limv(a,~¢t, z—t)=0 for all ¢ in a.
pos

TheoreMm 2.1. (1) xe T(a,b,¢) if and only if x—yc T(a—y, b—y, c—¥).
(2) T(aa, ab, ac)=|a|T{a,b,c), where o is non-zerv real.

(3) T(a+p, btp, cl-p)y=T(ab,c) p.

(4) Tla,b,c) is weakly closed.

Proof. we shall establish (2) and (4).
(9) If z€ T{aa, ab, ac), then v(wa—ac, ab—ac)=v(wa—x, ab-—-2) | v(ea—uz,
ac—2) +v(ab—2x, ac—x). Multiplying by 1/|a], we have 2/ ialcT(a,b,¢) or
ze |a} T(a, b,c). The other inclusion is similar. (4) Assume that a,& T(a, b, ¢)
and {z,} —>ax weakly as n »oo. We have

viea—an a—x)=via—x, —(—x,) VG -2,)  a-a)

mv(a—a, b—1,) —vla—a, b—a,ta—x)

=v(a—a, b—a,)—via—, b—2)

=v(a—a, b—z,) —vie—z, x—x, b—2x)

>vla—a, b—a,) —via—x, b—x)—v(z,—z, 6—2)
=vla—x, b—z,)—via—z, b—a)—v(b—a, O—z).

Therefore, v(a—x, a—ax)-tvib—a, b-—x)
zvla—a, b—a,) —via—z, b—2x).

In a similar fashion,

v(a—ay a—x)4vb—a, b—ux)
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zvla~z, b—x)—vie—a, b—z,).
From the definition of weak convergence, we have
v{a—x, b—a,)—>v(a—x, b—2a).
Hence it now follows that x& T(a, b, ¢).

Let (X, v} and (X, v} be linear 2-normed spaces. A mapping f: X-——>X; is
said to be continuous at p in X if for each ¢>0, there is a 0>0 such that if
v(a—c, b—c)<d and p&T(a,b,c), then v(f(a)—f(c), S —fF(e))<e and
S (T(a,6,e)) CT(f(a), f(B), fle)).

THEOREM 2.2. Let (X, v) and (Xi, ©) be linear 2-norined spaces. 1f a mapping
S 1 X——>X, is linear and continuous at 0, then f is continuous at ?.

Proof. Given 20, there is a >0 such that if v(a—¢, b—c)<6 and 0 T{e,
b,¢), then v(f(a)—flo). f(B)—f(c))<e and f(T(a,b,c))CT(f(a), f(b),
f(e)). Assume that v(z—z, y—2)<0 and pcE T(x,y,z2). By Theorem 2. 1, Q<
Tlz=p, y=p, z—p). Also, v(z—p—2ip, y—p—21p)<b, v(flx)—f(2),
F) =f(@)<le and f(T(x—p, y—p, 2=p))CT(f(z—p), Fly—p), flz—p)).
Let g T(x,y,2). Then g—peT(x—p, y—p, =—p). Hence flg—pef(T(z—
b y=p, z=p)), de, f@Q—F(PYETIf(2)~F(p), F)—Fp), Fz)—F(p)).
Thus fl@) € T(f(x), f(3), f(2)) Therefore, f(T(x, y 2))CT(f(), f&),

f(2)), i.e., fis continuous.

COROLLARY 2.3. Let (X, v) and (X), v) be linear 2-normed spaces. If a
mapping [ X-—>X; is linear, then [ is continuous at p if and only if f is
continuous at 0.

Let (X, v) and (X3, v) be linear 2-normed spaces. We will say that a mapping
S+ X—>X, is bounded if there is a number K=0 such that v(f(z) ~f(»), f(z)—
f)<Kv(x~y, z—y).

THEOREM 2.4. Let (X,v) and (X1, v) be linear 2-normed spaces. 1f a mapping
1 X—>X is linear and continuous, then f is bounded.

Proof. If v(z—y, 2—3)=0, then z—y=a(z—~y). Herce flz—v)=af(z—y)
and therefore v(f(z) —f(3), f(2) —f(»))=0. Assume that v(z—y, z—y)=a+0.
Since f is continuous at 0, there is a 0>0 such that if v(a—c, b—¢)<§ and 0=
T(a,8,¢), then v(f(a)=f(c), F(B)—f(c))<1 and F(T(a,b,¢)) c T(f(a), S,
f(e)). Let f=(/2a)"2 v(B(x—y), Blz—»)=8/2<6 and 0&T(B(z—1y), 0,
Bls=m), v(f(Bx—y), f(Bx—y)))<1. Hence v(f(z) —f(y), f@&)—flon<
2/0 v(z—y, z—y). Therefore f is hounded.

THEOREM 2.5. Let (X, v) and (X1, v) be linear 2-normed spaces. 1f a mapping
f1X—>X, is lnear and bounded, and (X,v) is strictly 9-comvex, then fis
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continuous.

Proof. Assume that v(f(a) —f(c), f{b)~f(c))<Kv(a—¢, b—c) and £>0. Let
0=¢e/(K+1). If v(z—y, y—2)<d and 0€ T(x, », 2), then v(f(x) —f(2), F(¥) —
f(2))<Kv(zx—=z, y-—z)<e. By Theorem 1.3., since (X, v) is strictly 2-convex,
either C(z, v, 2)=T(z,5,2) or z=ax Py, a+-f=1. Assuming the former, if
pET(x,y,2), then p=ax+py+yz, a, 8, y=0, atB-+y=1. Therefore, using
the linearity, we have f(p)&T(f(x), —f(»), f(2)), ie, f is continuous.
Assuming the latter, s=ax--8y, a-+5=1, we have v(a—z, y--2)=0. Thus, if
peT(x, v, 2), viz—p, y—py=viz—p, =z—p)=v(y—p, =-p)=0. Since S is
bounded, F(p)e& T(f(x), f(v), f(=)). Le. f is continuous.
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