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1. INTRODUCTION

The method currently used for evaluating the value-of-time (VOT) for travel is to construct a
linear logit (modal) choice probability model, and derive the VOT within the structure of this model. '
Let P, be the probability that alternative i is chosen for a trip when a choice set I is offered to an
individual trip maker. Let t; and c; be the travel time and travel cost, respectively, if alternative i
is chosen, and a;, b, and b be the statistically obtained coefficients. The linear logit choice pro-
bability model is,‘ then, expressed as

2 2 ()

P,=
?epri,

i

where

y=atbpty+be G

Hence, the VOT based on the choice model is given by

VOT E e T T T T T T T T T T T T N e
duj/oc :

_b
~b
[+

An examination of the above practice reveals that the VOT theory U€u from all possible theories
u consists of two sub-theories: the behavioral choice theory TE Jfrom its domain 7 of;all possible
theories, and the VOT theory V1€ from its domain v of consistent theories with T, Therefore,
the universe set u of the overall VOT theory U is the Cartisian product of the pair (T,vy) over all
possible TE ], i.e.,

S | I 3)
v TE ](T’ D

The possibilities that can arise in testing the overall VOT theory U are:

1. Tand VT are true. 2> U is ture.

2.T and]or VT is false. > U is false.
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Therefore, if we want to employ conventional statistical hypothesis testing techniques to establish
the significance for VOT estimate, we have to do so for both theories T and VT in a consistent
manner,

A number of theory testing procedures have been proposed for models explaining choice behavior,
such as Stopher (1975), McFadden (1973), Boyce et al. (1974), Hansen (1975), and Goldfeld and
Quandt (1972). While the theory testing procedures for choice beahvior models are standardized
by the likelihood ratio test, there appears to be no procedure for testing the theory of the value
of time. This paper reviews three aspects of these testing procedures: the general theory testing
procedure, the theories to be tested, and the- construction of a testable hypothesis. Since there is
no standard testing procedure available that is satisfactory from the point of view of probability
theory, an ad hoc approach for establishing the significance of the value of time estimate is proposed.

II. GENERAL THEORY TESTING

An empirical choice theory is constructed to determine some “best” estimate, e.g., maximum
likelihood estimate, of unknown choice probability distribution on the basis of certain’ theoretical
statements about the choice behavior. For example, given any random observation Y = {Y is}s over
a finite number of alternatives i=1} ..., m, m= 2, and individual choice makers, s=1, ..., S, with finite
outcome space Y, we wish to determine an unknown probability distribution P = [Pls} over Y on the
basis of some theoretical statement T about the choice probability distribution. Let the set of all
possible probability distributions over Y be

P= {p,,z'pis=l’pi820for a“s:l’".’s} ............................... (4)

and let PTSP denote the set of distributions in P consistent with T.

PT={pePlT] ................................................ (S)

Then the problem is to determine a best representative distribution Pr€ Pr.consistent with the
theory T over Y. In this context, the maximum likelihood approach to determine Prover Y is to
find some P that maximizes a likelihood probability Ly (P IY) of pin Py,

Pe [priLy @1V =;né>i,;¢(plY)}

To compute L (PIY), observe first that
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If we note N ={n, | as the number of trips observed for i by s from all possible trip observations
of size N = ?? Ny, and X ={x;} ={t;, c; ) as the descriptions of i relevant to s from all possible
descriptions DC of alternatives i=1, ..., m, then the observation Y consists of N ={n;s} and x={x;);

Let the theory T be specified as a choice model, f, which consists of a set of behavioral assump-
tions and a model specification, expressed as choice probabilities of choosing ibys;

Pis = f(xis s Xyg0 ""lmt) foralls=1,..,8. - --. il (8)
Then, the likelihood of p given observation Y under T is defined to be

Ll.(P lY) =_|;n3-f(x“; _}Sl',..., Xm,)nis ................................... (9)

The “best representative’” among all possible distributions under any theory is then defined to be the
unconstrained maximum likelihood estimate p* of the true distribution given our sample Y;

*c * = L
p* €lp|LCP*|Y) max A @) : (10)

Where L, (P|Y) is the likelihood of P given Y under any theory. For finite distributions, this uncon-
strained maximum always corresponds to the relative frequency distribution of the sample itself.

Thus the likelihood of pE P is defined as

T LB N e 12)
L@ =Tl (1)

i s
A simple hypothesis test, then, can be regarded as having the form

null hypothesis Hp: p=p
alternative hypothesis Hy: p=p*.
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Hence, following the standard Neyman-Pearson argument for simple hypothesis tests, the r{.llost
powerful test of Hy for any given level of significance « is defined by the critical region Cy in
the sample space DCy of all possible samples of size N from DC such that the likelihood ratio

values A are as large as possible :

L@
A T = ———
LaG@*Y)
S350 s Ky,
- i]'?‘ Ny l'll-,‘ ................................... (13)
T

If the set of distributions PT consistent with the theory T constitutes a k dimensional subspace
(Number of parameters) within the S (m:1) dimensional space P of all distributions, it is well known
that under the null hypothesis Hy, the statistic -2 log AT is asymptotically Chi-square distributed
with S (m-1)-k degrees of freedom. The importance of reviewing the likelihood ratio procedure
for theory testing is to emphasize itsrelation to the overall theory testing, which includes a set of
behavioral assumptions, a model specification, and parameter estimates.

If the overall theory is accepted (cannot be rejected) the likelihood ratio test can be extended
to test the significance of parameter values, commonly known as a goodness of fit test, under the
given set of behavioral assumptions and model specification. Suppose we have k (or more commonly
k + m-1) parameters, b = (al, s 3y by, bc), from the gpace £, in expressing the choice probabilities
for eachs=1, ..., s ;

PT={p()_(s';_b_);s=l,...,S.} ................................... (14)

Let w be a subset of Q. If b is the true value of the parameters in the popolation, we set up. the
statistical null hypothesis Ho that b €w against the alternative hypothesis H, that bEQ-w. In practi-
ce, the parameter values are judged significant if b # O for a given level of significance o.

H, : b€w={0]
H,: bEQ-w.
Let the new theory T, consist of the same behavioral assumptions and a model specification,
givenY and b € w. Assuming that the maximum likelihood estimate is D # 0, the two competing hy-

potheses can be written as

Ho : T0 is true.
Ha : Ta is true.
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Then the likelihood ratio for this problem is given by

=w-0'é®
Lug(P*1 %
- PX1b=0)

A

f
=
1]

]
s
T PXsib)'s
Consider a partitioning of b as by and by;:

R=Quiibi) eeeiiinnnn T e S (16)

If we want to test by =0 against by =£_‘,, the unspecified parameter values by under the null hy-
pothesis should be estimated through a constrained maximum likelihood approach

~ ~
p_“.e‘jm Ip(xlby= o,gu)=h:aé‘ﬂn P@IQ=Q_,_QH)‘ ...... e an

where $y; is a parameter space for by;. Then the two hypotheses are specified as, following Wald’s
reduction for a single hypothesis;

Ho : m,.ml)=<g’§n)
Hs : (t-).lal’-ll):&’h")'

The above testing procedure should be distinguished from the common practice (see for example,
Watson, 1974) of setting the null hypothesis to

Ho : (hx.hu):(Q,/ﬁn)

against the same alternative hypothesis. This concludes the conventional hypothesis testing procedure
for theory T.

Once the coefficients, Qi, =1, ..., m, b, and b,, are estimated, tests for the theory T can be con-
ducted for the choice model of (1) and the significance of each coefficient can be tested. Although
the construction of the theory V is consistent with the theory T, a test of T cannot be regarded as a
test of the theory U, nor of V. To test U, we need to test V in a consistent manner after it is
established that T cannot be rejected. Suppose that T cannot be rejected by tests based on the
asymptotic normality of the maximum likelihood estimators of b, and b,. Then the underlying pro-
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bability distribution of the VOT may be assumed to be a porbability density function of the ratio of
two normally distributed random variables. Here, two cases are possible. First, if the sample estimator
AR AN o4 3
b,/b - of the ratio bt/b . does not appear to converge (in probability) to a stable value, then the ratio
of the standardized variates

B; = b_‘.:_E__(t_Lt) ~N(0,1)
ot
b, —E (b.) '
Be = '_'—. o ~NOD) (18)

can be assumed to be Cauchy distributed with zero median and unit scale parameter (Johnson and
Kotz, 1970). Hence in this case the only possible tests of the ratio & /{; are in terms of median of the
Cauchy distribution (for such tests, see Johnson and Kotz, 1970).

On the other hand, if we are able to establish that I/_gconverges (in probability) to a finite mean,
then b /b can be inferred to be asymptotically normally distributed (Hansen, 1975; Kendall and
Stuart, 1958) with variance;

Hence the standard t-test can be applied in this case.
Alternatively, the choice model can be specified to include the VOT as a parameter;

exp[bc(VOT "Gtc)+ a)
Eexp[b (VOT- tJ+c])+aJ]

. N
We would obtain the estimate VOT for VOT directly through the maximum likelihood estimation
procedure. Since \/’(}I‘ is then distirubted normally, we would be able to conduct a test of the {aT.

However, the maximization procedure for the maximum likelihood estimation associated with the
direct estimate of YOT tends to be computationally more difficult.

OI. INFERENCE AND NULL HYPOTHESIS TENTING

Testing the null hypothesis, Ho, against alternatives, H,, is a well established technique in
traditional statistical inference. Suppose that the theory is established that the VOT is $2.00/hr.
based on the choice behavior. We wish to know whether or not the magnitude of $2.00/hr. could
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have been due to random effects. We set up H,: VOT =0, against H,: VOT = 2, choose a significance
level, @, select an appropriate test statistic, say t or F, and proceed with the test. Rejection of H, per-
mits us to assert, with a precisely defined risk of being wrong at a%, that the VOT = 2 was not due to
random effects. Failure to reject H, is commonly referred to as “accepting” H,. However, we can
never conclude that the null hypothesis is true, but only that it cannot be rejected at the given level
of significance.

This significance testing procedure, as Edwards (1971) pointed out, is always severely biased
against H, from a Bayesian point of view. Since H, is to be confirmed, H, is set up to be characteri-
stically rejected with large samples (Lehmann, 1959). The probability of rejecting the null hypothesis
is a function of five factors; whether it is a one or two tail test, the level of significance, the value of
the standard deviation, the size of the deviation from H,, and the number of samples. Once a set of
samples is collected, the level of significance and the choice of H,, are left to the researcher. Yet, any
failure of rejecting the null hypothesis when this goes against the researcher’s intuition is too often
blamed on the small sample size.

Wilson (1971), among others, proposed to identify “one’s theory with the null hypothesis, and
basing support on the acceptance of the null hypothesis™ (p. 163).

Statistical inference is so difficult and perplexing a subject that a considerable amount of debate
on the null hypothesis decision procedure has gone on, with the result that no resolution can be
applied across the board. At present, the well-documented statistical inference techniques discussed
are still philosophicaily problematic. We should not be overly willing to accept a theory by rejecting a
null hypothesis which is designed to be rejected. The choice of the hypothesis, if the traditional in-
ference method is to be taken, should be made with care rather than setting up a ‘“straw man” hypo-
thesis Hy, :b =0 when it is known that it can be easily rejected, for reasons irrelevant to the purpose
of the research.

When the maximum likelihood estimates, {)_\, of the coefficients are obtained, the assymptotic
variance-covariance is given by Kendall and Stuart (1961)

9%(-logL) , -1
[cov (b, b)) = [E}{————— T h
which is an expected value of the inverse of the Hessian matrix of the negative log likelihood function.
As the explanatory variables x; and xj associated with by and by become collinear to each other, it
can be shown that the covariance, cov (by,, bx), between them becomes larger. In other words, the
shape of the confidence region for the coefficients depends upon the properties of the data matrix.
The maximum likelihood estimates we can obtain are conditional on a given finite sample.

Suppose that a linear compound of two explanatory variables x; and x, are hypothesized to ex-
plain the choice probability P:

P=f(a)
a=byx; +bhax,
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where b, and b, are coefficients corresponding to x; and x,, respectively. Then the negative log
likelihood function is

—logL=g(byXy #baXg). s et cereteeeeeeeieeai 3)

Suppose x; and x, are collinear, so that the scattered samples in the variable space form an ellipsoid.
Let x; and x, be written as

X2 =ax1v+e ............................................... (24)

where E (¢) = 0 and E (¢?) 3 0 expresses the degree of independence between x; and X, . Substituting
(24) into (23) we obtain

—logL=g [(by +aby) Xy tebaxa]. ..o 25)

If x, and x, are perfectly collinear, then E (e2?) =0, and the coefficients b, and b, therefore
cannot be determined uniquely. But it is possible to obtain an estimate & of the linear combination

d=bytaby ... i ettt et e e e i (26)
of the coefficients in (25). Consider a given confidence level corresponding to
7\
C=g(dX1). i e @7

AN 7\ /N
If we let b; and b, be any estimates of b, and b, consistent with d, i.e.,

7\
then it is clear that, although d is uniquely determined for C,/I;l and/t;z are not,
More generally, even if x; and x, are not perfectly collinear, the equation

X SOX] vt eee e aee e et e 2%

may still represent a dominant principal axis of the ellipsoid of concentration for the sample scatter
in the variable space. In this case, equation (28) may then approximate the principal axis of the cor-
responding confidence region in the parameter space. Hence, rewriting (28) as

Y T R .. (30)
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it is clear that the slope of the brincipal axis of the (/I; 1 ,/t\)z) confidence region is approximately equal
to —o. That is, if x; and x, are positively related (a >0), we expect the principal axis of the con-
findence region to be negatively sloped (-a < 0). If samples are clustered into groups or other ir-
regularities are presented from a unimodal distribution with decreasing density from the mean value,
specific values of the slope of the principal axis of the confidence region would be different at dif-
ferent levels- of significance. However, we expect, in general, an inverse relationship between the
sample distribution and confidence region. Figure 1 shows the general relationship between the
scattered samples in the variable space and the confidence region in the parameter space.

Case A is when the variables x, and x, are independent of each other. The case B and C show X1
and x, which are correlated, and case D is when x, accounts for all of the variation in the dependent
variables,such as choice probability. In the cases B and C, as the variables become strongly correlated,
the confidence region becomes narrower. Notice that the travel time and travel costs are likely to be
positively correlated as in the case B. If the mode choice model is developed to explain choice be-
havior and the composite hypothesis is set up for H, :h = 0, the choice theory is likely to be accepted.
This is acceptable when the explanation of the choice behavior is of importance, but how much is
explained by each of the explanatory variables is not.

If the purpose of developing the choice model is to estimate the value of time, expressed as a ratfq
of choice model parameters, the acceptance of the choice theory by rejecting H, =b = 0 is apt to be
misleading. Minimized Type I error for the choice theory for a fixed significance level does not
minimized Type I error for the value of time. To avoid the problem, we should set up the statistical
null hypotheses H,:b = (0, b;) and H,:b = (b, , 0), where b, and b, are the constrained maximum
likelihood estimators as shown in case F of Figure 2, which is obtained by (17).

Often each coefficient is tested separately with two simple tests, with the statistical null hypo-
theses, H,:b = (0, b,) and H,:b = (b, 0), as conducted’in analogue to the t-test for each regression
coefficient in the multiple regression model. The results of this test can also be misleading with re-
spect to the value of time, when the two variables are collinear. Figure 2 shows the case in which
the multicollinearity is mild (case E) and severe (case F). In case F, both null hypotheses words,
when the multicollinearity is mild, as in the case of E, simple hypothesis testing would properly re-
ject the choice theory in light of the effect on each variable.

If, however, the multicollinearity is severe, the confidence region becomes a long and narrow band
and the simple hypothesis testing may still be in danger of giving a wrong conclusion for the value of
time.

If the average speed and unit travel costs per mile are used to explain the choice behavior instead
of the travel time and travel costs, the value of time is expressed as a product of the coefficients
associated with the variables, assuming that the same linear logit model of (1) is used.

where b, is a coefficient associated with the average speed and b, unit travel costs. The situation we
should worry most about in this case is the one in which the explanatory variables are negatively cor-
related as in the case C in Figure 1. The conclusion drawn from the composite hypothesis with H :
b = 0 is less likely to be misleading about the value of time than in the case C, while the simple hypo-
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Figure 1. Direction of Confidence Region and Sample Scatter
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thesis testing would not help determine the value of time. However, if the confidence region is titted
with different angles in the coefficient space as shown in case B of Figure 3, then composite hypo-
thesis testing for choice behavior can also be misleading for the conclusion of the value of time study.

Since the confidence region is the area in the coefficient space where the true values of the par-
ameters are located with a given level of probability or higher, it is drawn as an isolikelihood function,
a contour in which the values of the likelihood function are all equal, under the assumption that the
maximum likelihood estimators are asymptotically normally distributed. If the likelihood function is
roughly dqrhe-shaped, then the confidence region is approximately circular. On the other hand, if a
ridge is present on the surface of the likelihood function, then the confidence region appears as an
ellipsoid. Although the likelihood function for the linear logit model is everywhere concave, it is
difficult to generalize the shape of the likelihood function over a large range of b values. Figure 4
shows some possible irregular shapes of the likelihood function which may be difficult to trace, and
for which the possibility of committing either Type I or Type II error may be unexpectedly large.

Consider a binary mode choice problem in which the log likelihood function is expressed as

Lenilogp +n2 108 P2 oot i e e (32)

where p; +p, =1andn; +n, =N. Suppose each mode is characterized by travel time and travel
costs and the choice behavior is explained by a linear logit model with mode specific parameters,

Figure 2. Shape of Confidence Region and Sample Scatter
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pr=f®uetytbyecatan) L (33)
p2 = f (bzt ty + bgc'CQ + a,)

where f () is a logit model. Let n, samples and n, samples be scattered and the confidence region for
the mode parameters be given as shown in Figure 5.

If we impose additional constraints on the parameters that

then, we have the choice model expressed as (1). The confidence region for (l;t,/t;c) is related as in
Figure 6 with the confidence regions shown in Figure 5. Even if the confidence regions for each mode
at different levels of significance (contours of iso-likelihood functions) may be systematically
changing, confidence regions for all modes could vary much more radically than for any one mode.
As the number of modes in the choice set becomes large, the “direction” of the confidence regions
(the direction of the principal axis of the ellipsoid) may resist intuitive prediction for the various
levels of significance (any ridge on the likelihood surface may not be constant in its direction, nor
even continuous). Therefore, a priori data examination to detect a possibly unstable VOT estimate is
not an easy task, although it is necessary.

Figure 3. Slope of Principal Axis of Confidence Region
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Figure 4. Irregular Shape of Likelihood Surface
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Figure 6. Confidence Region for All Modes Figure 7. Stability of VOT as a Ratio of Parameters b, /b,
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IV. TESTING THE THEORY OF VOT

Suppose the VOT is expressed as a ratio of coefficient estimates of a linear logit model, as shown
in equation (2). The significance of the VOT implies that the slope of the parameters are stable for
any values of the parameters within a given confidence region. Hence the significance test of the
VOT estimate is a test of the stability of the direction of the vector v connecting the origin and coef-
ficient estimates (b b )m the parameter space.

Suppose travel tlme t and travel cost ¢ are appropriately transformed (having the same sample
variance) so that'b b, and b can be assumed to be independently and identically normally distributed
with variance o? Hence the confidence reglon for a given level of significance is a perfect circle. In
this case, the stability test of the vector V direction is of the angle 6 between the vector V and the
vector V connecting the ongm and tangent to the circular boundary of the confidence region as

shown in Figure 7. Let (b,, b¢) be the point on the boundary of the confidence region tangent to. V
The angle 8 can be expressed as

W=cosf A
AR
btbr+bcbc
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Hence, W is a statistic corresponding to the maximum possible angle between vectors in the con-
fidence region of the ratio of the coefficient estimates. If the variances of b, and b are not identical
and/or ¢ and ¢ are not truly independent, the confidence region becomes elhpsoxdal 1f it is closed, and
finding b andb becomes complicated. In particular, the following nonlinear program must be
solved (see for example Goldfeld and Quandt, 1972):

max &-D-6-D
Sub]ectto L(t,c@ L(t c b+zaH.lb) ........................ -

where z,, is the area under the normal curve with a given confidence level and /ﬁ‘l is a2 maximum
likelihood estimate of the variance-covariance matrix. Unfortunately the solution of (36) is very
difficult and no explicit solution exists.

Alternatively, an approximate method can be developed for_h by taking h to be an end point of
the principal axis of the confidence region (obtainable (approximately) from (29)). This approximate
method gives us a reasonable estimate of the range of VOT when the principal axis of the confidence
region is negatively sloped (e.g., case B). This is the situation when the VOT value is most unstable.
On the other hand, if the VOT value is stable, that is, the principal axis of the confidence region is
positively sloped, this approximate method would perform badly (e.g., case C). In other words, this
approximation is most reliable for the worst situation (where we are most concerned with the
stability of the VOT) and most unreliable for the best situation (when we need not be overly con-
cerned with the stability of the VOT).

V. AN ILLUSTRATIVE EXAMPLE

To illustrate the stability of the VOT estimates, a hypothetical data set of bivariate attributes of
time savings, ¢, and cost savings, c, for binary alternatives, 1, and 2, are constructed as in Table 1 with
simple closed ellipsoidal isodikelihood contours. The principal axis of the ellipsoid is toward the
origin, in order to have a reasonably stable VOT estimate. First, maximum likelihood estimators for
a linear logit model for choice behavior are estimated. The choice model is

exp y;

P = — i=1,2
exp u; +expu;

= +
uy bttl bc C

U = a+b't2 + b002.
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The parameter estimates are obtained as

Table 1. Hypothetical Data for Iso-Likelihood Evaluations

tg C1 t2 Ca
15 20 25 5
25 15 15

25 10 10 144

(f,, f2) are frequency observations for Q,2).
Total sample size is 300.

..................................................

50
99

To determine the iso-likelihood contours,the negative log likelihood function is evaluated in the
vicinity of the maximum likelihood estimates of b, and b, given a = 15, as shown in Figure 8. The
negative log likelihood value at the maximum likelihood estimate point (minimum value of the
negative log likelihood function) is 81.2. Assuming that a = 15 is true, the true values of byand b,
at the 95% confidence level lie anywhere within the negative log likelihood value of approximately
340. Among the points that are evaluated, the lowest and highest values of VOT that are within the
range are 0.50 and 17.78, respectively. The highest value for the VOT estimate that can be accepted
with 95% confidence level is over 35 times larger than the lowest estimate which is acceptable. Yet,
the composite hypothesis tests for parameters reveal that the parameters (b ¢ and b,) are significantly
different from zero at the 95% confidence level. Hence,accepting the VOT on the basis of accepting

the choice model can be grossly misleading.
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Figure 8. Likelihood Contour Simulation
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VI. CONCLUSION

Hypothesis testing of the choice model occurs on two different levels: overall theory testing and
individual parameter testing. Based on the Neyman-Pearson procedure, the likelihood ratio test can
be used for both overall theory testing and individual parameter testing. The likelihood ratio test is
here considered to be a more valid testing procedure than the standard t-test, in that the distribution

theory for the latter is far more difficult to justify in the logit model context.

However, the Neyman-Pearson argument does not provide a fault-free testing procedure. Its
main drawback is that it provides only an indirect test. The classical “test-of-hypothesis™ procedure
always involves a “null” hypothesis, i.e., one designed to be rejected, rather than a hypothesis which
is designed to be accepted. Unfortunately, there is no widely accepted testing procedure which
enables one to accept a given hypothesis. Although examining the ciritical region would give us some
insight, it does not allow for a method of concrete statistical inference.



RO EREE Bk B4 87

Hence, testing the choice theory should be distinguished from testing the VOT theory. Although
composite hypothesis testing of parameters for travel time and travel cost can potentially provide
some insights, it does not provide a statistical test for the VOT, which is a ratio of two parameters
within the linear logit model. Without knowing the underlying distribution of the VOT estimator,
the Neyman-Pearson argument cannot be applied. An alternative procedure was developed in section
IV to analyze in a direct way the “shape™ of the critical region in the parameter space. In this con-
text. the correlation-like angular measure (36) of the VOT dispersion in the parameter space was
shown to provide potentially useful information concerning the stability of the VOT estimator. Finally,
the example in section V estimator can be highly unstable, although the choice theory itself cannot
be rejected. Further, the example raises a question of the validity of the procedure for estimating
choice model base VOT.
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