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The Integrated Bivar Criterion

for Selecting Regressors

&

ABSTRACT

A criterion is developed from the integrated sum of weighted squared bias and variance for use in selecting
regressors. Some properties of this criterion are discussed and an example illustrating its use is included.

1. Introduction

This paper considers the problem of variable
selection in a multiple regression. Choosing a
subset involves considering the increased pre-
dictive variance caused by using too many re-
gressors and increased bias caused by using too
few.

There is considerable literature on the sub-
ject of the selection of the “best” subset of
independent variables in a multiple regresson.
Draper and Smith [1966], Mallows [1973],
[1974] and others propose criteria
for Hocking [1976] has
reviewed criteria for variable selection. Many

Helems
variable selection.
of these criteria are simple function of the
mean squared error of estimation (or prediction),
which trades off estimated variance against
estimated squared bias on a one-to-one basis.
Young [1982}] propose the criterion that is based
on a weighted sum of squared bias and variance
in which the relative weights reflect the import-
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ance attached to these two quantities. The Park’s
criterion [1971] is concerned with precision
not only at the design points but within some
region of interest using weight function.

The proposed criterion in this paper is based
on weighting integrated squared bias relative
to integrated variance within some region o~
interest.

In section 2 we introduce the Integratec
Bivar (Bias-variance) criterion and some pro-
perties of this criterion are discussed im section
3. In section 4 we propose plotting the Inte-
grated Bivar criterion as a function of the weighs
in order to compare subsets and an example s
given.

2. Formulation of the criterion

It is assumed that there are # = {+1 obser
vations on a t-vector of input variables, x* =
(%,,»%), and a scalar response, y, such that



the jth response, j = 1,...,n,is determined by

yi = B0 lzlﬂi %j +oej (2.1)
The residuals, e;, are assumed identically and
independently distributed, wusually normal,
with mean zero and unknown variance, o?2.
Note that implicit in these assumption is the as-
sumption that the variables x,,...,x; include all
relevant variables although extraneous variables
may be included.

The model (2.1) is frequently expressed in
matrix notation as

Y = X8 + ¢e. (2.2)
Here Y is the n-vector of observed responses,
X is the design matrix of dimension#n x({+1)
as defined by (2.1), assumed to have rank ¢+1,
and § is the (¢+1)-vector of unknown regression
coefficients.

Let the model (2.1) be written in matrix form
as

Y =X, 8 + X8 + ¢, (2.3)
where the X matrix has been partitior.ed into
X, of dimension #x( p +1) and X, of dimension
n xr The 8 vector is partitioned conformably.

In the variable selection procedure, 7 is
usually denoted the number of terms which are
deleted from model (2.2) andp = t+ 1— ris
denoted the number of terms which are retained
in the final equation.

The properties of residual mean squared
error o° and ,Z? » have been described by several
authors.

We know that

E((n=-p—1)3" = E(SSE,)
=(n—p—1)6* +8 X, [ I-X,

(X Xp)"' X5 I X0 Br . (2.4)
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If the subset model with X, deleted is used,
the estimated response isy, = x; 8, with mean

E() =48, + x AB- (2.5)
where A = (X; X, ' X; X,
and Var(%) = x5 (X; X,)™" %, 62 (2.6)

A risk function for judging the effectiveness of
Bp as an estimator of § is given by

1 -
H@w) ==, | (var(5)
g R

+w bia’s (3, ) 1dW (%) (2.7)

where w is nonegative constant and
Ris region of interest.

In this W(x) is measure defined over the Borel
subsets of R satisfying:
ying [ aw(xy -
R
XR xx"dW(x) =M, afinite matrix.
In practice, this means W(x) can be treated as

a probability distribution function with A7 as
its matrix of secondOorder moments about orign.

From (2.5), (2.6) and (2.7),

1
IH :FjR (2, (X5 Xp)tx, a?

tw-Bi (x5 A—x/Y (x5 A~ x/) ]
X B, ) dW (x)

= tr[(Xp Xp Y My, |

w



+ M7'1 ],81 (28)
where Mijiy % xj dW (x)
R

and 77 denotes trace.

After replacement of parameters ¢ and 3, by
their estimators, the Integrated Bivar criterion is

Ic (w) = tr (X5 X)) My

b BT A My A= 24" My
g
M, b, (2.9)

Thus, the Integrated Bivar criterion is an esti-
mator of JH (w).

3. Properties of the proposed criterion

Park [1977] proposed by criterion which
maximizes § given by

Q =& { tr (X' X)'M)
—tr [ (X, Xp Y M)
7 br/ fA,MppA - ZA’ Mpr +Mrr]br
3.1)
where A j xx' dW(x).
R
From (2.9) and (3.1)

~

feCwy = w {0 x x My - L)
62
'J(‘(lAW) tr[(X;;Xp)_lMpp]

Q

2

and Jc (1) = tr{((X’' X)Y' M) —

Q>

Thus, /c(1) rule is equivalent to max @ criterion.
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1
If W(x) =7 at design points and W(x) = O else-
where, then Af = (X' X)/n.
From (2.4) and (2.8),

1 w
Hw) = —[p+1+ — BrX: (1~
" g
=Xp (Xp Xp ) X)X, B: )
1 w
:—[p+'1+——2(E(SSE,,)
n 4]
—(n-p-1)a?)}
It follows that
1 w
Ic (w) :—{p+1+TZSSEp
n g

—w(n—p—1) }
1
“—{wC + (1=w) (P D)

where C, is Mallow’s C, criterion,
which is given by

SSE,
Py

+2(p+1) —n,

Young [1982] proposed the criterion which is
given by

Ci(w)=wC, + (1 ~w) (p+1),

Hence, If W(x) =%at design points and W(x) =
0 elsewhere, /c(w) rule is equivalent to the rule
proposed by Young.

Let’s consider the special case of orthogonal
regressors where X' X = »/ |

1 . ,
IC(M/) :-“’[IprJ s b7 M, br
n

QN>' b



. y'X,,

2

1 .
:—-—tr[AMppJ + 2~
n n° o

M, X;
X7y (3.2)

1
(case 1) If W(x) = 7 at the design points and
W(x) = O elsewhere, then
M=(X"X)/n=1,
We know that

1
=Y (I —— (Xp XD
n

RIS ONUCEFEIY

1
and SSE,, = Y’(I *; Xp X;:)Y

Equation (3.2) becomes

+ .
[c(w):p ! + w-Y' X, XY/ nat
1 SSE,
=— {ptl1+w(—— —n
n gt
+p+ 1)},
Let Zc(w|p) denote the Ic(w) for given p.
Ie(w|p +1) — Ic(w|p)
1w .
=~ {— (SSE,u — SSE,) + (1 +w)}
n o a

A {~wt2 + (1 +w)}
n

where ¢/ is the t statistic with v=n—¢—1 degrees
of freedom. Thus additional regressor is ineluded

if and only it ¢7 > (1+1/w). In case of M --1,
Ic(w) rule is equivalent to sequential ¢ tests on
regression coefficient with critical ¢ values at
VI+i/w

(case 2) If W(x) be uniform weight function over
the region of interest R,

5 xx'dx
M:Lexx’dW(x) :—R;_
SRdx

1o
A
= \1
l
2wt
where R = {(x;, =~ y Xk )
] <1 d=1, 2, e , ¥}

Equation (3.2) becomes

1
Ie (w) =— (1 +~£)
n 3

+tw-Y' X, X, Y/ 3n*a?

1 SSEp
= —{3+p+w- (
3n o

- H
z

+p+ D},

Thus, we get the same result as case 1.

4. The use of Ic(w) plots.

We can use /c(w) plots like the C;(w) plots
suggested by Young [1982]. For fixed subset
of variables, /o(w) is the first order linear fune-
tion of w. A subset is considered optimal at a
point w if its line is lower than all other eines
at that point.

The Jc(w) plot is used to determine the sub-



set that is optimal for a wide interval of mode-
rate values of w. If such an interval ranges from
zero to well beyond one, then the subset is
“optimal resistent” to changes in relative con-
cern both for predicting and for esfimating mean
response.

When there is no such subset, then the subset
that is optimal for values of w close to zero is
best for prediction. While the optimal subset
for large values of w is best for estimating mean
response. The subset with optimal range between
these and including w = 1 is a good compromise
subset that can be used for both purposes.

The /c(w) plot thus offers a complete picture
of alternatives and conditions under which each
alternative is optimal. The final selection would
then depend on the conditions that are most
desiable for a particular problem.

Example. The gas mileage data that discussed by
Hocking [1976] to predict gasoline mileage for
1973-1974 automobiles, road tests were per-
formed by “Mortor Trend” magzine in which
gasoline mileage and ten physical characteristics
of various type of automobiles were recorded.

TABLE 1.

Description of variables for the gas mileage data
(32 observations)

Number Description
X, Engin Shape
X2 Number of Cylinders
X3 Transmission Type
X, Number of Transmission
Speeds
Xs Engine Size
X Horse power
X7 Number of Carburetor barrels
As Final Drive Ratio

Xg Weight (pounds)
Xy Quarter Mile Time (Seconds)
y Gasoline Mileage

For simplicity, the data are standardized as

following:

32 3

Z xij = 0, xS =1

=1 i=1

1 17 2, e , 10

32 32

2y=0, D=1

7=1 =1

We will take the weight function, W(x), to be
uniform over the region of interest ® = {( x,
o, X900l xl<1,i=12,..,10}. A summary
of the relevant quantities is given in TABLE 2.

TABLE 2.

Summary of the relevant quantities for gas-
mileage data

p MSE, x 10° C, Qx 10° Ic (w) x 10

2 5.85 1.22 125 998w +1.18
3 5.37 1.10 133 809w +2.13
4 5.26 0.79 139 435w+4.88
5 5.24 1.85 134 0.68w +9.34
6 5.33 3.37 130 0.07w+10.63
7 5.50 5.15 115 -1.10w +13.32
8 5.71 7.05 99.1 -0.04w +15.92
9 596 9.10 60.8 0.13w+22.13

The /c(w) function for different p are plotted
in Figure 1. Figure 1 shows that the optimum
number of terms retained is different for dif-
ferent values of w.

Note that i) For values of w close to zero
- p = 3is disirable selection, which
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is the same result as C, criterion.
if) For large values of w p = 5 is
disirable selection, which is the
same result as MSE, criterion.
iii) For values of w including one
p = 4 is disirable selection, which
is the same result as @ criterion.

Thus, p =3 is preferable for prediction and
p =5 for estimation and p = 4 is desiable for
both purposes.

Figure 1.

Ic(w) plots for Gasmileage data.

Ie(w) p=2
=3
p=4
p=5
p=b
0 i 5 W
5. Summary

We have proposed a selection criterion which
gives a picture of alternative regressor subsets
and condition under which each alternative is
optimal for given W(x). The criterion is based
on weighting integrated squared bias relative to
integrated. variance over the region of interest .
If W(x) = %at design points and W(x) =0
elsewhere, Jc(w) rule is equivalent to the rule
proposed by Young [1982] and 7c¢(1) rule is

equivalent to the rule proposed by Park [1977].

The use of this criterion was proposed through
Ie(w) plot and an example of such an use was
given.
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