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ESTIMATION OF THE SCALE PARAMETER IN THE PARETC
DISTRIBUTION BY THE QUICs MEASURES

By Jungsoo Woo and Kgoang Hoo Lee

1. Introduction

Assume that z observations are made on a random variable with a Pareto
distribution

F(x)=l—-(1+—x:‘§a—)-—r for x=>a>0, (1.1

where, A>0 ad ¥>0. The Pareto distribution has been used in connecion with
studies of income, insurance risk, migration, size of cities and firms, word
frequencies, and business morality etc. [4].

In this paper, we shall consider the problems of estimating the scale parameter
in the distribution (1.1) by use of the quick measures. Quick measures whose
principal merits are their simplicity, and it has not been influenced by the
censored data. Here we shall consider the range, the quasi-range, the thickened
range, and the Downton’s unbiased estimator as the quick measures to estimate
the scale parameter in the distribution (1.1).

A number of authers, including Gupta and Singh [3], Lee and Kapadia [6],
considered the statistical properties of the range and quasi-range. The thickened
range was introduced by Jones, advocated by Prescott, and further studied by
D’Agotino and Cureton [2] only when the population is normal distribution.
Barnett et. al. [1] studied the Downton's unbiased estimator, and pointed out
that it had high efficient and not so influenced by outlicrs as the range for the:
normal case.

The relative mean square error will be defined as the mean square error divi-
ded by the unknown scale parameter.

2. Mean sguare error of the quasi-range
The i-th quasi-range, say W, of a sample of size n is defined as the range of’

n—2(i—1) sample values deleting the (7—1) largest and the (/—1) smallest

samples. That is,
W.=X—n=Xiy (=12, =, [(a+1)/2D,
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where Xy, X5, -, X, are the order statistics from a random sample of size
# from the distribution (1.1). Obviously the 1st quasi-range is a range. We
shall denote the range by W. These quasi-ranges will be useful in the censored
samples, and obviously have some robustness against outliers.

Now, in order to obtain the mean square error of the quasi-range of random
samples from the distribution (1.1), the mean and the covariance of the order
statistic of ¢ random sample from the Pistribution (1.1) can be easily checked
as follows;

E(X ) =a+(4,-18, if r>m-i+1)7, @2.1)
and
Coo( Xy, X )=A(A]'B]'-4)F, 2.2)

if yomax{(n-i+1)7Y —j+D7Y, (i<jand i, j=1,2, -, n.)
where,
A=T(m—i+1-1DIrn+ DT =i+ DM a+1-1/7)
B=r(n—i+ DI (n+1-2/r)/{F(n—i+1-2/7) (n+1)}.
(f=1, 2, #s, )
It follows that

—] 2 -1 2
MSE(WI) = (Bn-i—l - An+ 1—1 ki Bl' _Ar‘ _ZAfM-l—i

(4B -Ap+(4,, i~ A-DDE, (2.3)
where 7=1, 2, -, [(#+1)/2].

From (2.3), the exact numerical values of the mean square error of the
quasi-ranges of random samples from the distribution will be evaluated by use
of a I.B.M. computer for the sample size n=4, 8, 16, 24, 32, and the shape
parameter y=2.5, 3.0, 3.5, 4.0, and 4.5.

Throughout the table 1, the sample quasi-range of the f{ollowing cases will be
considered as good estimators in the sense of mean square error;

a) For a given shape parameter y=2.5, the 2nd, 3rd, 4th, 5th, and 7th quasi-
ranges are good estimators for the sample size #=4, 8, 16, 24, 32, respectively.

b) For a given shape parameter y=3.0, the 2nd, 3rd, 4th, and 5th quasi-
ranges are good estimators for the sample size #=4(and 8), 16, 24, 32, respec-
tively.

c) For a given shape parameter y=3.5, the 2nd, 3rd, and 4th quasi-ranges
are good estimators for the sample size #=4(and 8), 16(and 24), 32, respectively.
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d) For a given shape parameter y=4.0, the range, 2nd, and 3rd quasi-ranges
are good estimators for the sample size #=4, 8(and 16), 24(and 32), respsctively.

e) For a given shape parameter y=4.5, the range 2nd, and 3rd quasi-rangss
are good estimators for the sample size #=4, 8(16 and 24), 32, respzctively,

3. Mean square errors of the range and it's jackknife estimator.

It is well known that the range is widely used for an estimating problem
because of it’s computational simplicity. But, the table 1 shows that the range
is worse than some quasi-ranges in the sense of mean sgquare error.

It is natural that we compare the mean square error of the range with that
of the jackknife estimator for the range of random samples from the distribution
(1.1). As the mean square error of the range has been considered in section I,
now we consider only the mean square error of the jacknife estimator for the
range.

The jackknife estimator for the range is defined by

JO)=@a—DW/n—(n—1DW,/n.

From the results (2.1) and (2.2), the mean squares error of the jackknife
estimator for the range can be represented as follows;

MSE(JOW)=[(@n-1*B - A2+ B, '~ 4?24 (4] 'B]!

o
—4,
-244,,_1(:4;13; I—A,)}/nz—-‘z(n—l)(Zn—l)

—Al)}/n‘—l—(rz-l) B, 1-4° +B

((4,-4,_)(A]'B ' -4)+A,4,7 B,

n—1"n—1
—A7'B; -4, +A)/n+ ((2n—1)(A,—-AD/n
—-(n-1D(4,_;-4)/n-1)15"

Therefore, we can obtain the exact numerical values of the mean square errors
of the jackknife estimator for the range of the random samples from the distri-
bution (1.1) for the shape parameter y=2.5, 3.0, 3.5, 4.0, 4.5 and the sample
size n=4. 8, 15, 24, 32 by use of the L. B.M. computer.

It will be shown in table 2 that the jackknife estimator for the range is worse
than the range of the random samples from the distribution in the sense of the:
mean square error.
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4. Efficiencias for estimaters of the scale parameter.

Although the quasi-ranges are generally useful in the censored samples and
have some robustness against outliers, their efficiencies are not very high in
complete samples, but a suitable linear combination of the range and the quasi-
ranges may piovide an efficient estimator. A simple way deing this is to use
the thickened range which is defined by

Ji=W+W koot W,y i=1,2, 0, [(r+1)/2].

From the results (2.1) and (2.2), the mean square error of the thickened
range of random samples {rom the distribution (1.1) can be represented as
follows:

2

i _ . ol ,
41155(]:,)=[£(3 1 A,+1~-j+ jl_A})

a+l—j
2 i ‘A A -1 B -1 A
+ ;.52_‘;., L ngl—-j(‘ nit1—j ﬁ'+1-—-f_ R+1—j’)
A4 B A -2 A, (4B
P - gyt 2 B i

The exact numerical values of the mean square ciror for the thickened range
-of random samples from the given distribution will be evaluated by use of the
[.B.M. computier for the sample size #=4,8,16,24,32 and the shape parameter
r=2.5230,3 5 4.0, and 4.5.

It will be shown in table 2 that the thickened ranges of the following cases
are considered as good estimators in the sense of the mean square error;

a) For a given shape parameter y=2.5, the thickened ranges /.. J, J, and

o
]5 are good estimators for the sample size =4, 8, 16{and 24), 32, respectively.

b) For a given shape parameter y=3.0, the thickered ranges J, J. and J;
.are good estimators for the sample size n=4, 8(16 and 32), 24 respectively.

c) For a given shape parameter y=3.5 the thickened ranges J, and J, are
.good estimators for the sample size #=4(and 8), 16(24 and 32), respectively.

d) For a given shape parameter y=4.0, the thickened ranges J p Joand Jq
.are good estimators for the sample size =4, 8, 16(24 and 32), respectively.

e) For a given shape parameter y=4.5 the thickened ranges J, and /, are
-good estimators for the sample size n=4(and®), 16(24 and 32), respectively.
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Next, the efficiency of a given estimator T, denoted by Eff(T), will be defined
as the ratio of the mean square error of the given estimator to the mean square
error of the best linear uabiased estimator.

The best linear unbiased estimator of the scale parameter in the distribution
(1.1) when the location and the shape parameters are known can be obtained
by using the well-known Gauss-Markoff theorem [5]. Provied y>2, the best
liner unbiased estimator of the scale parameter becomes

~ n—1
ﬁ:((?"F‘l)_Z; BI-X(;]‘F(T‘—I)B,‘X‘:“)—da}/(nr-—g-d)’
i=
where,
d=(r—:—1)ﬁ‘13i+(r—1)3", and B, is given in (2.2).
1=

The variance of the best linear unbiased estimator of the scale parameter in
the distribution (1.1) can be represented by

Var(8)=nr—2-d) " '8 (4.1)
Now we can define another unbiased estimator of the scale parameter in the
distribution (1.1) as follows;

D=(r-DEr-D L @i-n-DXy/ Inta=Dr).

This estimator has been called Downton's unbiased estimator. It is well known
that the Downton’s unbiased estimator is highly efficient and not so influenced
by the outliers as either the range or the root-mean square in the case of the
normal population [1].

From (2.1) and (2.2), the variance of the Downton’s unbiased estimator can
be easily checked as follows;

Var(D)= [(r—1)(2r—1>/<n<n—1)r)}2{§1(2z'—n—1)2
(B,.“—A;"t)+2%(2i-n—1)(2j—n-1)(,«1,.“3,.“

~A)A)E. 4.2)
From (4.1) and (4.2), the exact numerical values for efficiencies of the
Downton’s unbiased estimator will be evaluated by use of the I. B.M. computer
for the shape parameter y=2.5, 3.0, 3.5, 4.0 and the sample size #=4, 8, 16,
24, 32.

Finally, we may consider the optimal quasi-range and the optimal thickened
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range, say W, and J,, respectively. Here the optimal quasi-range means a quasi-
range which has the least mean square error for a given shape parameter and
a given sample size . For an example, the optimal quasi-range for y=3.0 and
n:=15 is the 3rd quasi-range. The optimal thickened range has the same meaning
as the optimal gquasi-range. ‘

From table 1, table 3, and the result (4.1), the exact numerical values of the
mean square error of the optimal quasi-range and the optimal thickened range
can be easily obtained, and the efficiencics for those ranges can be evaluated
for the shape parameter y=2.5, 3.0, 3.5, 4.0, and the sample size #=4, 8, 15,
24 and 32.

It will be shown in table 4 that the optimal quasi-range and the optimal thi-
ckened range are more efficient than the Downton’s unbiased estimator, but the
optimal thickened range is not always mare efficient than the optimal quasi-
range for the shape y=2.5 3.0, 3.5 4.0 and the sample Size #=4, 8, 16, 24
and 32. These results for estimation of the scale parameter in the Pareto distri-
bution are very diferent from those of [8] for the scale parameter in the normal
distribution.

TABLE 1. The relative MSE of the quasi-ranges of random samples from Pareto distri-

bution.

n i r=2.5 y=3.0 =35 7r=4.0 r=4.5
1 7. 3253 2. 0464 0. 9278 0.5873 0. 4761

4 2 0. 6437 0, 6633 0. 6993 0.7328 0.7612
1 14, 4167 3.8115 1. 4969 0.7446 0.4615

& 2 0. 5329 0.3291 0. 3165 0.3524 0. 3390
3 0. 4090 0.4732 0. 5387 0. 5203 0.6344

4 0. 7589 0. 8024 0. 8335 0. 8564 0. 8740

1 28.0723 7.3223 2.7849 1.2692 0. 6617

2 1.4822 0. 5199 0. 2494 0. 1863 0. 1955

3 0.3234 0,1842 0.1976 0.2488 0., 3062

4 0. 1930 0.2371 © 0.3004 0. 3788 0. 4392

£ 5 0. 2805 0.3709 0.4502 0.5149 0. 5673
6 0. 4423 0.5313 0. 5987 0. 6502 0. 6909

& 0.6419 0.7067 0. 7525 0. 7363 0.8122

8 0.8722 0.8974 0.9144 0. 9267 0. 9339

1 41,0899 10. 6417 4.0373 1.8214 0.9172



Estimation of the Scale Parameier in the Pareto Distribution by the Quick Measures 209

2 2.8176 0. 9636 0. 3836 0.1935 0.1447
3 0. 7191 0. 2398 0.1342 0.1400 0.1809

4 0.2414 0.1280 0.1523 0. 2008 0.2717

5 0. 1350 0.1589 0. 2288 0.3012 0. 3662

6 0.1576 0.2375 0.3220 0.3956 0.4573

A 7 0. 2360 0.3356 0. 4204 0. 4890 0.5443
8 0.3427 0.4431 0.5208 0.5800 0.6283

9 0. 4667 0.5566 0.6224 0.6719 0.7103

10 0.6035 0.6752 0.7258 0.7631 0.7917

1 0.7522 0. 7995 0.8320 0.8586 0.8735

12 0,9137 0.9309 0.9425 0. 9508 0.9571

1 62380  19.5100 9. 3830 5.5845 3.7989

2 4.2543 2.0473 2.1702 1. 6408 12448

3 1.2865 0. 4082 0.1589 0.1056 0.1207

4 0.4778 0.1504 0. 0094 0.1285 0.1803

5 0.1980 0. 0982 0. 1284 0.1894 0.2536

6 0.1100 0.1197 0.1869 0. 2601 0.3273

7 0.1075 0.1729 0. 2563 0.3328 0.3985

8 0. 1484 0.2413 0. 3300 0. 4050 0. 4669

= 9 0.2135 0.3177 0. 4054 0. 475¢ 0.5327
10 0. 2834 0. 3989 0. 4814 0. 5457 0. 5965

1 0. 3832 0. 4832 0.5578 0.6146 0. 6587

12 0. 4806 0.5701 0.6347 0. 6830 0. 7204

13 0.5844 0. 6596 0.7125 0.7516 0.7813

14 0. 6944 0.7520 0.7917 0.8207 0.8427

15 0.8103 0.8470 0.8729 0.8910 0.9046

16 0.9349 0. 9480 0. 9568 0. 9630 0.9677

TABLE 2. The relative MSE of the range and the jackknife estimator of the range of
random samples from the Pareto distribution.

B r Rel. MSE(W) Rel. MSE(J(W))
2.6 7.3255 22, 9455
3.0 2. 0464 . 6.4813
4 3.5 0.9278 2.7353
4.0 0.5878 1.4302
4.5 0. 4761 0. 8813
2.5 14. 4167 48. 3071

3.0 3.8155 12,9759
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8 3.5 1. 4569 65,2211
4.0 0. 7446 2. 5531
4.5 0. 4616 1.4222
2.8 28.0723 94. 2702
3.0 7.3223 24,1714
16 3.5 2.7849 9. 4404
4.0 1.2692 4. 4875
4.5 0. 6617 2.4032
2.5 41.0899 136. 5192
3.0 10. 6417 ' 34.0003
24 3.5 4.0373 13.0634
4.0 s 1.8214 6. 1409
4.5 5 0.9171 3.2521
25 ©. 62,3980 175. 6694
3.0 19,5109 43. 3130
32 3.5 9. 3830 16, 9484
4.0 . 5.5845 8,3474
4.5 3.7980 4.7830
TABLE 3. The relative MSE of the thicken ranges of random samples from the Pareto
distribution.
n i 7r=2.5 7r=3.0 7=3.5 7=4.0 y=4.5
1 7.3253 2, 0464 0. 9278 0. 5873 0. 4761
4 2 1.4627 0. 9012 0.8742 0.9021 0.9231
a | 14. 4167 3.8115 1, 4969 0. 7446 0. 3542
2 2. 0461 0. 9088 0. 4024 0. 4021 0.4121
. 3 0. 2294 0.2271 0. 4471 0. 5502 0. 4321
4 0. 8246 0. 2907 0. 5067 0.5972 0. 6107
1 28.0723 7.3223 2, 7849 1. 2692 0. 6617
g 4.7211 1. 4774 0. 3806 0. 3906 0. 4824
3 1.6022 0. 2901 0.2771 0. 2708 0. 4226
4 0.2112 0. 3048 0. 2940 0.2042 0.4302
16 5 0. 3272 0. 3671 0.3144 0. 3333 0.4771
6 0. 3842 0. 3990 0, 4506 0. 3806 0. 5024
7 0. 4192 0.4112 0. 4607 0. 4129 0. 5764
8 0. 5207 0. 4802 0. 5598 0.7146 0. 8002

=

41.0899 10. 6417 4.0374 1.8214 0.9171
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2 4.7122 2. 8027 0.9108 0. 1402 0. 2047
3 2.0018 1.0927 0. 2084 0. 1054 0.1154
4 0.3120 0.2172 0. 2701 0.1342 0.1630
o 5 0.3471 0.2109 0. 2900 0. 1667 0. 2031
6 0. 3506 0.3274 0.3114 0.1907 0.2122
7 0.4172 0. 4006 0.3202 0.2204 0.2797
8 0. 4490 0.5471 0.3406 0. 2906 0. 3214
1 62. 3930 19. 5109 9.3330 5.5845 3.7985
2 7.0101 3.0572 1.9406 1.5024 1.1024
3 3.9072 0.5104 0. 4409 0.9027 0.2035
4 0. 4072 0. 5248 0.4772 0.2671 0. 3288
- 5 0.1142 0. 5806 0.5021 0. 2908 0. 3655
6 0. 2284 0. 6706 0. 5353 0.3112 0.3910
7 0. 3762 0. 6706 0.5807 0.3302 0. 4114
8 0. 4027 0.7221 0.6001 0.4105 0. 5067

TABLE 4. The efficiencies of the optimal quasi-range, the optimal thickened range and
the Downton’s unbiased estimator with respect to the B.L.U.E. of the scale parameter-
in the Pareto distribution.

n Eff. #=2.5 ¥=3.0 y=3.5 r=4.0 =45
Wo 1.164 1.199 1.572 1.423 1.219

4 Jo 1. 642 1. 854 1. 570 1.423 1.219
D 4.721 7.810 6. 884 6. 485 6.280

Wo 1. 643 1. 460 1.512 1.784 2.114

8 Jo 0.822 1.007 1.923 2.03 1.762
D 5.182 5.972 4,979 4,433 4.251

Wo 1.681 1. 698 1.901 1.933 2,112

16 Jo 1. 785 2.675 2.730 2.812 3.023
D 7.249 5.244 4,216 3. 670 3.367

Wo 1. 741 1,794 2.014 2,190 2. 366

24 Jo 3.021 3,044 3.115 1. 654 1.191
D 5.522 5.278 4,109 3.505 3.184

Wo 2.230 2. 408 2.687 2,944  3.167

32 Jo 2.601 2.814 3.001 3.244 3.516
D 5.877 5. 230 4. 466 3.724 3.333

Department of Statistcs,.
Yeungnam University
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