### ON THE PROJECTIVE HOMOLOGY GROUPS

## by Abd El-Sattar A. Dabbour

In [1] it is proposed the idea of the projective homology groups of compact spaces, which is a generalization of the interesting homology groups of Steenrod, [9]. These groups depend on a new type of cycle. In essence it is an infinite cycle (in a compace space X) with the (regularity) requirement that the successive simplexes are contained in any finite open covering of the space X, [4]. In [1] and [2] it is proved that the projective homology groups satisfies the first five axioms of the seven axioms of Eilenberg-Steenrod, [5].

The main objective of the present paper is to present a proof of the excision axiom (The sixth one of Eilenberg-Steenrod's axioms) for the projective homology groups defined over a chain complex as a coefficient group.

# 1. Projective homology groups over a chain complex

Let  $\mathscr K$  be the category of pairs of countably locally finite simplicial complexes and their inclusion maps, Q the category of pairs of compact spaces and their continuous maps, and  $G = \{G^i, d^i\}$  be a chain complex of commutative groups, where  $d^i : G^i \longrightarrow G^{i+1}$  for each integer i. For every object (X, A) of Q consider the set w(X, A) of the triples  $\alpha = (K, L; f)$ , where (K, L) is an object of the category  $\mathscr K$  and  $f : (K, L) \longrightarrow (X, A)$  is a regular map, i.e., for every finite open covering Q of the space X amost f-images of the simplexes of K are contained in the members of Q. If  $\beta = (K_1, L_1; f_1) \subseteq w(X, A)$  then we consider  $\alpha < \beta$  if in K there exists

 $\pi_{\alpha\beta}: (K, L) \longrightarrow (K_1, L_1)$  such that  $f_1 \pi_{\alpha\beta} = f$ , [4]; and we say  $\alpha < \beta$  in virtue of  $\pi_{\alpha\beta}$ . Let  $C_{n+i}^{\alpha,i}$  be the group  $C_{n+i}$   $(K, L; G^i)$  of the chains of (K, L) over the coefficient group  $G^i$ , and  $D_n^{\alpha} = \bigcap_i C_{n+i}^{\alpha,i}$ . The boundry map  $\Delta_n^{\alpha}: D_n^{\alpha} \longrightarrow D_{n-1}^{\alpha}$  is defined as shown in the following diagram:



i.e., if  $X_n \in \mathcal{D}_n^{\alpha}$  and its  $i^{th}$  coordinate is  $X^i \in \mathcal{C}_{n+i}^{\alpha,i}$ , then  $\triangle_n^{\alpha} X^i = \partial_{\alpha}^i X^i + (-1)^{n+i} d_{\alpha}^i X^i$ , where  $\partial_{\alpha}^i$  is a boundary homomorphism and  $d_{\alpha}^i$  is the homomorphism induced by  $d^i$ . The homology groups of the chain complex  $\{\mathcal{D}_n^{\alpha}, \ \triangle_n^{\alpha}\}$  is denoted by  $\{H_n^{\alpha}\}$ . If  $\alpha < \beta$  then  $\pi_{\alpha\beta}$  defines, consequently, the homomorphisms  $\pi_{\alpha\beta}: \mathcal{D}_n^{\alpha} \longrightarrow \mathcal{D}_n^{\beta}$  and  $\pi_{\alpha\beta*}: H_n^{\alpha} \longrightarrow H_n^{\beta}$ , [6].

DEFINITION 1. The projective homology group of a pair (X,A) over the chain complex G is the limit of the direct system  $\{H_n^\alpha, \pi_{\alpha\beta^*}\}$  over the directed set w(X,A); it is denoted by  $H_n(X,A:G)$ ; or, breifly  $H_n$ , i.e.,  $H_n(X,A:G) = H_n = \varinjlim_{\alpha} \{H_n^\alpha, \pi_{\alpha\beta^*}\}$ .

If G is a trivial chain complex, [6], the  $H_n$  is isomorphic to the projective homology group defined in [2].

If  $g:(X,A)\longrightarrow (Y,B)$  is in the category Q and  $\alpha=(K,L;f)\in w(X,A)$  then  $g(\alpha)=(K,L;gf)$  is in the set w(Y,B). The induced homomorphism  $g_*:H_n$   $(X,A;G)\longrightarrow H_n(Y,B;G)$  is defined as follows: if  $A_n\in H_n(X,A;G)$  with representative  $h\in H_n^\alpha$  then  $h\in H_n^{g(\alpha)}$  and it is a representative of  $g_*(A_n)$ .

If the boundary homomorphism  $\partial_*$  of the groups  $\{H_n\}$  (compare with [3]) then it is easy to show that the triple  $\mathscr{H} = \{H_n, g_*, \partial_*\}$ , which is called the projective homology construction over the chain complex G, is naturally equivalent to the construction H defined in [3]. Moreover, we can prove that the triple  $\mathscr{H}$  satisfies the first five axioms of Eilenberg-Steenrod list of axioms, [3].

### 2. The excision axiom

The object of this section is to verify the sixth one of the Eilenberg-Steenrod's

axioms for the construction  $\mathcal{H}_n$ . The proof depends on the following notions.

DEFINITION 2. If  $(X, A) \subseteq Q$  and  $\alpha = (K; f)$  is in w(X), then an element  $x^i$  of the group  $C_{n+i}^{\alpha,i} = C_{n+i}(K; G^i)$  is said to be a regular chain of X relative to A if, for each neighborhood V of A,  $f(t) \subset V$  for almost all simplexes t of the carrier  $|x^i|$  of  $x^i$ .

The subset  $\overline{C}_{n+i}^{\alpha,i}$  of  $C_{n+i}^{\alpha,i}$  consisting of the regular chains of X relative to A is a subgroup; for if  $x_1^i$  and  $x_2^i$  are in  $\overline{C}_{n+i}^{\alpha,i}$  then  $|x_1^i - x_2^i| \subset |x_1^i| \cup |x_2^i|$ , [6]. The factor group  $C_{n+i}^{\alpha,i}/\overline{C}_{n+i}^{\alpha,i}$  is denoted by  $\overline{C}_{n+i}^{\alpha,i}$ . Note that if  $f(K) \subset A$  then  $\overline{C}_{n+i}^{\alpha,i} = C_{n+i}^{\alpha,i}$ .

Let  $\{\overline{H}_n^{\alpha}\}$ ,  $\{\overline{\overline{H}}_n^{\alpha}\}$  be the homology groups of the corresponding chain complexes  $\{\overline{D}_{n}^{\alpha}, \overline{\Delta}_{n}^{\alpha}\}$ ,  $\{\overline{D}_{n}^{\alpha}, \overline{\Delta}_{n}^{\alpha}\}$  where  $\overline{D}_{n}^{\alpha} = \overline{C}_{n+i}^{\alpha}$ ,  $\overline{D}_{n}^{\alpha} = \overline{C}_{n+i}^{\alpha}$  and  $\overline{\Delta}_{n}^{\alpha}$ ,  $\overline{\Delta}_{n}^{\alpha}$  are the restrictions of  $\Delta_{n}^{\alpha}$ .

DEFINITION 3. The projective homology group of the space X (pair (X, A)) relative to A over the chain complex G is the direct limit  $\underset{\alpha}{\underline{Lim}} \{\overline{H}_n^{\alpha}, \ \overline{\pi}_{\alpha\beta*}\}$  ( $\underset{\alpha}{\underline{Lim}} \{\overline{H}_n^{\alpha}, \ \overline{\pi}_{\alpha\beta*}\}$ ), where  $\alpha \in w(X)$ ; it is denoted by  $\overline{H}_n(X; G)$  ( $\overline{H}_n(X, A; G)$ ).

It is easy to show that each of the pairs  $\{\overline{H}_n(X;G), \ \overline{g}_*\}$  and  $\{\overline{H}_n(X, A;G), \ \overline{g}_*\}$  is a covarient functor, where  $\overline{g}_*, \ \overline{g}_*$  are the induced, by the map  $g:(X, A) \longrightarrow (Y, B)$  of the category Q, homomorphisms.

Along the following part denote by X the bouquet  $X_1 \vee X_2$  of the two compact spaces  $X_1$  and  $X_2$ , [7], and by A the subset  $X_2$ . Also, let  $1:A \longrightarrow X$  be the inclusion map and  $r:X \longrightarrow A$  the retraction, [5].

THEOREM 1. The projective homology group of X relative to A over G is isomorphic to the projective homology group of the space X over G.

PROOF. Define the homomorphism

$$T_n: H_n(A;G) \longrightarrow \overline{H}_n(X;G)$$

by : if  $A_n \in H_n(A;G)$  and its representative is  $h \in H_n^{\alpha}$ , where  $\alpha = (K;f) \in w(A)$ , then  $h \in H_n^{1(\alpha)}$  defines the element  $T_n(A_n)$ , where  $1(\alpha) = (K;1f) \in w(X)$ .

It is easy to prove that  $T_n$  is a monomorphism. In order to prove that  $T_n$  is an epimorphism, consider that  $B_n \in \overline{H}_n(X;G)$  and  $h \in \overline{H}_n^\beta$  such that h is a

representative of  $B_n$ , where  $\beta = (K_1; f_1) \in w(X)$ . Assume that  $Z_n \in \overline{D}_n^{\beta}$  belongs to the homology class h; i.e.,  $h = [Z_n]$ . Let  $K'_1 = \bigcup_i K_i$ , where  $K_i = |Z^i|$  and  $Z^i$  is the  $i^{th}$  coordinate of  $Z_n$ . Thus we obtain such an element  $\beta' = (K_1; f_1\pi)$  of the set w(X) that  $\beta' < \beta$  in virtue of the map  $\pi$ . Since  $Z_n \in \overline{D}_n^{\beta'}$  it follows that  $h' = [Z_n] \in \overline{H}_n^{\beta'}$ . Moreover, h' is a representative of  $B_n$ .

On the other side,  $h' \in H_n^{r(\beta')}$  and it defines an element  $A_n$  of the group  $H_n$  (A;G), where  $r(\beta') = (K'_1;rf_1\pi)$  belongs to w(A). It remains to show that  $T_n(A_n) = B_n$ . Denote by  $\hat{K}'_1$  the standard subdivision of  $K'_1 \times I$ , where I = [0, 1]. Define the map  $g: K_1 \longrightarrow X$  by:  $g\theta_0 = f_1$  and  $g\theta_1 = 1r f_1\pi$ , where  $\theta_s(a) = (a, s)$  for every vertex a of  $K'_1$  and s = 0, 1. It easy to show that g is a regular and  $\check{o} = (\hat{K}'_1; g) \in w(X)$ . This follows, essentially, from the regularity of each  $Z^i$  relative to A (Definition 1). If the two pairs  $\beta'$ ,  $Ir(\beta')$  are identified with the corresponding pairs  $(K'_1 \times 0; g)$ ,  $(K'_1 \times 1; g)$  then  $\beta' < \check{o}$  and  $1r(\beta') < \check{o}$  in virtue of  $\theta_0$  and  $\theta_1$ , respectively. Also we have  $\theta_{0*}(h') = \theta_{1*}(h')$ , i. e.,  $B_n = T_n(A_n)$ .

THEOREM 2. The projective homology group of the pair (X, A) relative to A over G is isomorphic to the projective homology group of the pair (X, A) over G.

PROOF. Define the map

$$T_n^*: H_n(X, A; G) \longrightarrow \overline{\overline{H}}_n(X, A; G)$$

as follows. Let  $A_n \in H_n(X, A; G)$  and  $h \in H_n^{\alpha}$  such that  $h \in A_n$ , where  $\alpha = (K, L; f) \in w(X, A)$ . If  $1_K$  is the identity map of the simplicial complex K onto itself then it induces a homomorphism  $1_*: H_n^{\alpha} \longrightarrow \overline{\overline{H}}_n^{\alpha'}$ , where  $\alpha' = (K; f) \in w(X)$ . The element  $1_*(h)$  is a representative of  $T_n(A_n)$ .

Now the following sequence is exact, [8]:

$$N^{\alpha'}: \cdots \longrightarrow \overline{H}_{r}^{\alpha'} \longrightarrow H_{r}^{\alpha'} \longrightarrow \overline{\overline{H}}_{r}^{\alpha'} \longrightarrow \overline{\overline{H}}_{r-1}^{\alpha'} \longrightarrow \cdots$$

Consider the following diagram:

$$H_n(A;G) \longrightarrow H_n(X;G) \longrightarrow H_n(X,A;G) \longrightarrow H_{n-1}(A;G) \longrightarrow H_{n-1}(X;G)$$

$$\downarrow T_n \qquad \qquad \downarrow T_n \qquad \qquad \downarrow T_{n-1} \qquad \qquad \downarrow T_{n-1} \qquad \qquad \downarrow T_n \qquad \qquad \downarrow$$

over G (The fourth axiom of the triple  $(\mathcal{H})$ , the second row is the direct limit of the direct system  $\{N^{\alpha'}\}$  over the set w(X), [5], and  $T_n$  is the isomorphism of the theorem 1. It can be proved that this diagram is commutative and there by, the five lemma of homomorphisms, [5], suffice to prove the theorem.

The main result is the following theorem.

THEREM 3. If U is an open subset of the space X (the bouquet of  $X_1$  and  $X_2$ ) such that its closure  $\overline{U}$  is contained in the interior of  $A=X_2$ , i.e.,  $\overline{U} \subset A^0$ , the inclusion map  $g:(X-U,\ A-U) \longrightarrow (X,\ A)$  induces the isomorphism  $g_*:H_n(X-U,\ A-U;G) \longrightarrow H_n(X,\ A;G)$ .

PROOF. Let X'=X-U, A'=A-U and O be the open covering of X consisting of  $A^0$  and  $X-\overline{U}$ . We mention that  $\overline{g}_* T^*_{n} = T^*_{n} g_*$ , wher  $T^*_{n}$  is the isomorphism given in the theorem 2. Therefore, it is sufficient to prove that the map  $\overline{g}_*: \overline{H}_n(X', A'; G) \longrightarrow \overline{H}_n(X, A; G)$  is an isomorphism.

Firstly, we show that  $\overline{g}_*$  is an epimorphism. Let  $B_n$  be an element of the group  $\overline{H}_n(X,A;G)$  with a representative  $h \in \overline{H}_n^\alpha$ , where  $\alpha = (K;f) \in w(X)$ . If the cycle  $Z_n \in \overline{D}_n^\alpha$  is belonging to the homology class h then it is not difficult to show that the  $i^{th}$  coordinate  $Z^i$  (for each i) of  $Z_n$  has such a representative  $z^i \in C_{n+i}^{\alpha,i}$  that all f-images of the simplexes of  $z^i$  are contained in the covering O of X, i.e., they are contained in either  $A^0$  or X-U. Consider that  $z^i = z_1^i + z_2^i$ , where  $z_1^i$ ,  $z_2^i$  are the restrictions of the chain  $z^i$  on those simplexes t of  $|z^i|$  for which  $f(t) \subset A^0$ ,  $f(t) \subset (X-\overline{U}) - (A^0 \cap (X-\overline{U}))$ , respectively. Assume that  $K' = \{t \in K: f(t) \subset X-\overline{U}\}$  and  $\alpha' = (K: f|K') \in w(X')$ . It is clear that  $z_2^i \in C_{n+i}^{\alpha',i}$  and  $\partial_{\alpha'}^i$  ( $z_2^i$ )  $\in \overline{C}_{n+i-1}^{\alpha',i}$ . Thus we obtain such an element  $\overline{h} = [\overline{Z}_n] \in \overline{H}_n^{\alpha'}$  that  $z_2^i$  is a representative of the  $i^{th}$  coordinate of  $Z_n$ . Moreover,  $\overline{h}$  defines an element  $A_n$  of the group  $\overline{H}_n(X',A';G)$  for which  $\overline{g}_*(A_n) = B_n$ .

Secondly, in order to prove that  $\overline{g}_*$  is a monomorphism, assume that  $A_n \in \overline{H}_n$  (X', A'; G) and  $h \in \overline{H}_n^\alpha$  such that h is a representative of  $A_n$ , where  $\alpha = (K; f) \in w(X')$ . Consider that  $Z_n \in \overline{D}_n^\alpha$  belongs to the homology class h. Let  $z^i \in C_{n+i}^{\alpha,i}$  be a a representative of  $Z^i$  such that all gf-images of the simplexes of  $\|z^i\|$  are contained in the covering O of X. Moreover, consider that  $\overline{g}_*(A_n) = 0$ .

This means that there exist a pair  $\beta = (K_1; f_1)$  in the set w(X) and an element  $X_{n+1}$  of the group  $\overline{D}_{n+1}^{\beta}$  such that  $g(\alpha) < \beta$  in virtue of the inclusion  $\pi : K \subset K_1$ , and

$$\partial_{\beta}^{i} x^{i} + (-1)^{n+i} d_{\beta}^{i-1} x^{i-1} = \pi z^{i} + \bar{y}^{i},$$
  $\cdot \cdot \cdot (1)$ 

(see [6]), where  $x^i \in C_{n+i}^{\beta,i}$  is a representative of the  $i^{th}$  coordinate of  $X_{n+1}$  and  $\overline{y}^i \in C_{n+i}^{\beta,i}$ . Let  $K'_1 = \{t \in K_1 : f_1(t) \subset X'\}$ . It follows that the pair  $\beta' = (K'_1 : f_1) \in K'_1$  belongs to w(X') and  $\alpha < \beta'$  in virtue of  $\pi' : K \subset K'_1$ . Write

$$\mathbf{x}^i = \sum_{k=1}^3 \mathbf{x}^i_k$$
 and  $\bar{\mathbf{y}}^i = \sum_{k=1}^3 \bar{\mathbf{y}}^i_k$ ,

where  $x_2^i$ ,  $x_3^i$  ( $\bar{y}_2^i$ ,  $\bar{y}_3^i$ ) are the restrictions of the chain  $x^i$  ( $\bar{y}^i$ ) on those simplexes of  $x^i$  ( $\bar{y}^i$ ) for which  $f_1(t)$  are contained in the covering O of X,  $f_1(t) \subset A^0$ , respectively; but  $x_1^i$  ( $\bar{y}_1^i$ ) denotes the restriction of  $x^i$  ( $\bar{y}^i$ ) on the remain simplexes. The equality (1) can be rewritten as follows:

$$\hat{o}_{\beta'}^{i} x_{1}^{i} + (-1)^{n+i} d_{\beta'}^{i-1} x_{1}^{i-1} = \pi' z^{i} + \bar{y}_{1}^{i} + c^{i}, \qquad \cdot \cdot \cdot (2)$$

where 
$$c^i = \sum_{k=2}^{3} [\bar{y}_k^i - \partial_{\beta'}^i x_k^i + (-1)^{n+i+1} d_{\beta'}^{i-1} x_k^{i-1}].$$

It is clear that  $\overline{y}_1^i + c^i \in \overline{C}_{n+i}^{\beta',i}$ . If  $x_1^i$  is considered as a representative of the  $i^{th}$  coordinate of an element  $\overline{X}_{n+1}$  of the group  $\overline{D}_{n+1}^{\beta'}$  then the equality (2) implies that  $\overline{\triangle}_{n+1}^{\beta'}$   $\overline{X}_{n+1} = \pi' Z_n$ , i.e.,  $A_n = 0$ . This completes the proof of the theorem.

Dr. Abd El-Sattar A. Dabbour Dept. of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 9028, Jeddah, Saudi Arabia.

### REFERENCES

- Abd El-Sattar A. Dabbour, Homotopy axiom for projective homology groups; Bull. of Acad. of Sci. of Georgian SSR, 74 (1974), No. 3.
- [2] Abd El-Sattar A. Dabbour, On a generalization of Steenrod's homology groups; Bull. of Acad. of Sci, of Georgian SSR, 77(1975), No. 2.
- [3] Abd El-Sattar A. Dabbour, Projective homology construction over a chain complex; The 17 Annual Conf. on Stat. & comp. Sci. & Math., Cairo (1982).
- [4] G. Chogoshvili, Generalization of the product and limits and their applications in homology theory, Uspehi Math. Nauk (YMH) USSR, 4(130), 1966.
- [5] S. Eilenberg & N. E. Steenrod, Foundation of algebraic topology, Princeton University Prese, 1952.
- [6] P.J. Hilton & S. Wylie, Homology theory, Cambridge, 1960.
- [7] S.T. Hu, Homotopy theory, Academic Press, New York, 1959.
- [8] S. Maclane, Homology, New York, 1°67.
- [9] N. Steenrod, Regular cycles of compact metric spaces, Ann. of Math., 2(41), 1940.