Unions of l-groups

By Marlow Anderson and C. C. Edwards

In this paper, lattice-ordered semigroups (*l*-semigroups) which are unions of groups are discussed. If the natural order on the idempotents is contained in the lattice order, such *l*-semigroups are shown to be unions of *l*-groups. Then *l*-bands are considered, and completely characterized in case the band is rectangular, right regular or commutative. An *l*-band of *l*-groups, the natural analogue in this context of a band of groups, is then defined and characterized. It is shown that such *l*-semigroups may be constructed from a lattice of *l*-homomorphic images of a given *l*-group.

Let S be a semigroup. We say that S is a *lattice-ordered semigroup* (or *l-semi-group*) if S admits a partial order \leq which is a lattice order, such that

$$a(b \lor c) = ab \lor ac$$
$$(b \lor c)a = ba \lor ca,$$

and dually. Note that in [5] the statements about the meets are not part of the definition of *l*-semigroup.

Denote by E(S) the set of idempotents of S. The relation $\widetilde{\alpha}$ on E(S) defined by $e\widetilde{\alpha}f$ if and only if ef=fe=e is the natural partial order on E(S) [2]. It is easy to see that there exist l-semigroups S for which the orders \le and $\widetilde{\alpha}$ on E(S) are unrelated; just take any nonzero l-group G and adjoin a zero element greater than any element of G. However, as is shown in this paper, more natural examples of l-semigroups suggest that it is not unreasonable to require that the natural partial order on E(S) be contained in the lattice order; that is, if ef=fe=e, then $e\le f$. We shall call such l-semigroups natural, and shall confine our attention in this paper to them.

For the basic theory and notation for l-groups, the reader may refer to [1] or [3]. For semigroups, we shall rely on [2]. In particular, we shall denote by \mathcal{R} and \mathcal{H} Green's \mathcal{R} and \mathcal{H} relations. Also, if a semigroup S is a union of groups, it will be written as the disjoint union

$$S = \bigcup \{S_e : e \in E(S)\},\$$

where each S_e is the maximal subgroup of S which contains e; here e is the

identity for S_e . In fact, S_e is the \mathcal{H} class of e ([2], p.61).

The first theorem shows that it is possible to determine whether a natural *l*-semigroup is a union of *l*-groups by examining only its semigroup structure.

THEOREM 1. A natural l-semigroup is a union of l-groups if and only if it is a union of groups.

PROOF. The necessity is obvious. For the sufficiency, suppose that S is a natural l-semigroup and

$$S = \bigcup \{S_e : e \in E(S)\}$$

is a union of groups. We shall show that each $\mathscr H$ class S_e is an l-group. Since each S_e is clearly a partially ordered group, it suffices to show that $a \vee e \in S_e$, for each $a \in S_e$ (see [1], p. 18 or [3]). Now, $a \vee e \in S_g$, for some $g \in E(S)$. In fact, g is the smallest idempotent (according to the partial order $\widetilde{\alpha}$) such that

$$g(a \lor e) = (a \lor e)g = a \lor e$$

because if f is another such, then

$$fg=f(a \lor e)(a \lor e)^{-1}=g=(a \lor e)^{-1}(a \lor e)f=fg,$$

where $(a \lor e)^{-1}$ is the group inverse of $a \lor e$ in S_g . Since $e(a \lor e) = (a \lor e)e = a \lor e$, we have that $g\tilde{\alpha}e$. But let a^{-1} be the inverse of a in S_e . Then we claim that $e = (a^{-1} \land e)(a \lor e)$; this follows because

$$(a^{-1} \land e)(a \lor e) = (e \lor a^{-1}) \land (a \lor e) \ge e$$

and

$$(a^{-1} \land e)(a \lor e) = (e \land a) \lor (a^{-1} \land e) \le e.$$

But then ge=eg=e and so e=g. Thus S_e is an l-group.

We shall now examine those unions of l-groups for which there is some control over the multiplication and lattice operations. By an l-band we shall mean a natural l-semigroup which is a band (that is, each element is idempotent). An l-band of l-groups is a union of l-groups

$$S = \bigcup \{S_e : e \in E(S)\}$$

where E(S) is an l-band, and for all $a \in S_e$ and $b \in S_f$, we have that $ab \in S_{ef}$, $a \land b \in S_{edf}$ and $a \lor b \in S_{eVf}$. Here ∇ and Δ denote the lattice operations in E(S); this is necessary since E(S) need not be a sublattice of S. Note that requiring that $ab \in S_{ef}$ makes S a band of the groups S_e (see [2], p.25).

We first look at l-bands themselves; the following theorem describes those which are rectangular, right regular and commutative. Recall that a band E is

rectangular if it can be represented as $X \times Y$, where $(x_1, y_1)(x_2, y_2) = (x_1, y_2)$, and if |X| = 1, then E is a right zero semigroup (see [2] p.25). A band E is right regular if efe = fe, for all $e, f \in E$, (see [6]).

THEOREM 2. Let E be a band.

- (a) If $E=X\times Y$ is a rectangular band, the following partial order makes E an l-band: equip X and Y with arbitrary lattice orders, and put the direct product of these orders on E. Conversely, any rectangular l-band is of this form. In particular, any lattice order on a right zero semigroup makes it an l-band.
- (b) E is a right regular l-band if and only if and only if E is a natural lattice of right zero semigroups, each of which is a sublattice of E. That is, $E = \bigcup \{E_{\alpha} : \alpha \in A\}$, A is a lattice, and if $e \in E_{\alpha}$ and $f \in E_{\beta}$, then $e \vee f \in E_{\alpha \vee \beta}$. If E is the set of idempotents of a natural l-semigroup S, then E is a join-semilattice of S.
- (c) E is a commutative l-band if and only if E is a lattice. In this case the multiplication and meet operation of the l-band coincide. If E is the set of idempotents of a natural l-semigroup S, then E is a sublattice of S and $e \land f = ef$.
- PROOF. (a) Direct computation verifies that a rectangular band equipped with such a partial order becomes an l-band. Conversely, if $X \times Y$ is a rectangular l-band and $x_1, x_2 \in X$, define $x_1 \vee x_2$ to be a, where $(x_1, y) \vee (x_2, y) = (a, b)$ and define $x_1 \wedge x_2$ similarly. It is easily checked that these definitions are well-defined and make X a lattice.
- (b) Note that E is a right regular band if and only if it is a semilattice of its \mathcal{R} -classes (see [6]). First assume that E is a right regular l-band. We show that each \mathcal{R} -class is a sublattice. Now since E is natural, $ef\tilde{\alpha}f$, for all $e, f \in E$. Thus,

$$e \wedge f = (e \wedge f)^2 = e \wedge ef \wedge fe \wedge f \leq fe \wedge ef \leq e \wedge f$$
,

and so $e \wedge f = ef \wedge fe$. But then,

$$(e \land f)ef = ef \land fef = ef,$$

 $ef(e \land f) = fe \land ef = e \land f,$

and thus $(e \land f)$ \mathscr{R} ef. Also, it is easily verified that if $e \mathscr{R} f$, then $(e \lor f) \mathscr{R} e$. Thus, each \mathscr{R} -class is clearly a sublattice. We now show that the index set Λ is a lattice. But since \mathscr{R} is a congruence relation on a right regular band, and $(e \land f) \mathscr{R} e f$, we have that Λ is a meet semilattice. Now suppose that $e \mathscr{R} g$ and $f \mathscr{R} h$. The following then holds, because E is natural, and an idempotent in an \mathscr{R} -class is a left identity:

$$(e \lor f)(g \lor h) = eg \lor eh \lor fg \lor fh = (g \lor h) \lor (eh \lor fg) = g \lor h.$$

Therefore, $(e \lor f) \mathcal{R}(g \lor h)$ and so Λ is a lattice. Conversely, if E is a lattice of right zero semigroups as specified in the statement of the theorem, it will follow immediately that E is a right regular l-band if E is natural. But if ef = fe = e, then $e \land f \in \mathcal{R}_{ef} = \mathcal{R}_{e}$ and

$$e \wedge f = e(e \wedge f) = e \wedge ef = e$$
.

Finally, if E=E(S) where S is a natural *l*-semigroup, we of course have that $e \lor f \le e \nabla f$

where \vee is the join in S and ∇ is the join in E. However, $e \vee f$ is an idempotent, because

$$(e \lor f)^2 = e \lor ef \lor fe \lor f = e \lor f$$

 $e \lor f = e \lor f$.

and so

(c) This follows almost immediately from (b), because the right zero semigroups there reduce to singletons. The last statement holds, because

$$ef \ge (e \land f)^2 = e \land ef \land fe \land f = ef$$
.

Notice, of course, that (b) and (c) provide information about \mathcal{L} -unipotent and inverse semigroups which are l-bands of l-groups, since the sets of idempotents of these types of semigroups are respectively right regular or commutative bands.

We now characterize l-bands of l-groups.

THEOREM 3. Let S be a natural l-semigroup. Then S is an l-band of l-groups if and only if

- (1) $S = \bigcup \{S_e : e \in E(S)\}\$ is a band of groups, and
- (2) given $a \in S_e$ and $b \in S_f$, $a \le b$ if and only if $e \le f$ and $a \le ebe \in S_e$.

PROOF. (\Longrightarrow) (1) is clear. If $a \le b$, then $a \lor b = b \in S_f$, and so, by the definition of l-band of l-groups, $e \lor f \in S_f$; thus, $e \le e \nabla f = f$. Clearly, $a = eae \le ebe$, and $ebe \in S_{efe}$. But

$$e = e^3 \le efe \le e$$

and so efe=e. Conversely, $a \leq ebe \leq fbf \leq b$. (\longleftarrow) We first note that (2) implies that each S_e is convex, i.e., if $a \leq x \leq b$ and a, $b \in S_e$, then $x \in S_e$. Now, by Theorem 1, S is a band of l-groups. We now must show that E(S) is an l-band. If e, $f \in E(S)$ and $e \lor f \in S_g$, since $e \leq e \lor f$, we have by (2) that $e \leq g$. Thus, $e \lor f \in S_g$.

 $f \le g$. Define $e \nabla f = g$. Similarly, if $e \wedge f \in S_h$, let $e \wedge f = h$. From (2) it is easy to check that $e \wedge f$ and $e \nabla f$ are respectively the g.l.b. and l.u.b. of E(S) with the order it inherits from S. Now,

$$e(f\nabla g)\geq ef\nabla eg\geq ef\nabla eg=e(f\nabla g).$$

But because we have a band of groups, $e(f \lor g) \in S_{e(f \lor g)^*}$. Since $S_{e(f \lor g)}$ is convex and each group contains only one idempotent, $e(f \lor g) = ef \lor eg$. The dual proof (and the proof for distributivity on the right) is similar. Now, if $a \in S_e$ and $b \in S_f$, we must show that $a \lor b \in S_{e \lor f^*}$. Suppose that $a \lor b \in S_g$. Then $e \le g$ and $f \le g$ and so $e \lor f \le g$. But then

$$e\nabla f = (e\nabla f)^3 \le (e\nabla f)g(e\nabla f)\tilde{\alpha}e\nabla f$$

and so $(e\nabla f)g(e\nabla f)=e\nabla f$. Now

$$a \le a \lor af \lor fa \lor faf = (e \lor f)a(e \lor f) \le (e \lor f)(a \lor b)(e \lor f) \le g(a \lor b)g = a \lor b$$

and similarly for b. Thus

$$a \lor b \le (e \nabla f)(a \lor b)(e \nabla f) \le a \lor b$$

and so

$$a \lor b = (e \nabla f)(a \lor b)(e \nabla f) \in S_{(e \nabla f)g(e \nabla f)} = S_{e \nabla f}$$

The proof for meets is similar.

We remark that in the case where S is an orthodox semigroup (1) is equivalent to

- (1') S is equal to the kernel of its greatest idempotent separating congruence, i.e., for each $x \in S$, there exists an inverse x' of x such that x'xex'x=x'ex, for all $e \in E(S)$ [4]. When S is inverse, this means simply that each element commutes with every idempotent. We also remark that we could replace (2) by
- (2') given $a \in S_e$ and $b \in S_f$ with $a \le b$, then $e \le f$. Statement (2) above emphasizes that the order on S is completely determined by the order on E(S) and the orders on the l-groups S_e .

We can in fact explicitly describe the structure of an l-band of l-groups; this will enable us to construct examples of such semigroups. Let $S = \bigcup \{S_e : e \in E(S)\}$ be an l-band of l-groups, and let

$$H = \prod \{S_e : e \in E(S)\},$$

the unrestricted cardinal product of the l-groups S_e ; that is,

$$H = \{a \colon E(S) \longrightarrow \bigcup S_{\varrho} \colon a(e) \in S_{\varrho} \},$$

and $a \ge b$ if and only if $a(e) \ge b(e)$ for all e. Now define G to be

$$\{a \in H: e[a(f)]e=a(e), \text{ whenever } e < f, e, f \in E(S)\}.$$

Note that e[a(f)]e is necessarily an element of S_e , an so this definition makes sense. Because the group and lattice operations in H are pointwise, G is clearly an l-subgroup of H.

We now show that each of the l-groups S_{ϱ} is an l-homomorphic image of G. For consider

$$\phi_a: G \longrightarrow S_a: a \longrightarrow a(e).$$

This is clearly an *l*-homomorphism. We need only check that ϕ_{e} is onto. Let

$$s \in (S_e)^+ = \{t \in S_e : t \ge e\};$$

Since $(S_e)^+$ generates S_e as a group [1], it is sufficient to show that s is in the image of ϕ_e . Define $a \in H$ by letting $a(f) = fsf \lor f$. Now, $fsf \in S_{fef}$ and $fef \ \tilde{\alpha} \ f$, and so $a(f) \in S_f$. Clearly a(e) = s; thus it remains only to show that $a \in G$. For this purpose, suppose that $f, g \in E(S)$ and f < g. Then

$$f[a(g)]f = f(gsg \lor g)f = fgsgf \lor fgf = fgsgf \lor f = fsf \lor f$$
,

since $s \ge gsg \ge fsf$, and so fgsgf = fsf. Thus, each l-group S_e is an element of H(G), the lattice of l-homomorphic images of G(H(G)) is just the antilattice of $\mathcal{L}(G)$, the lattice of l-ideals of G, that it, the kernels of l-homomorphisms; see [3]). In fact, we may define $\phi \colon E(S) \longrightarrow H(G)$ by $\phi(e) = S_e$. If e < f, than $\phi(e)$ is an l-homorphic image of $\phi(f)$ via the map $a \longrightarrow eae$, and so the map ϕ is in fact order-preserving. The order and multiplication on S may then be defined as follows. Let

$$a_1 = K_1 g_1 \in G/K_1 = \phi(e_1)$$
 and $a_2 = K_2 g_2 \in G/K_2 = \phi(e_2)$.

Then

$$a_1 a_2 = K_3 g_1 g_2 \!\! \in \!\! G/K_3 = \!\! \phi(e_1 e_2) \text{ and } a_1 \!\! \leq \!\! a_2 \text{ iff } K_1 \!\! \supseteq \!\! K_2 \text{ and } K_1 g_1 \!\! \leq \!\! K_1 g_2 \!\! = \!\! a_1 g_1 \!\! \subseteq \!\! K_1 g_2 \!\! = \!\! a_1 g_1 \!\! \subseteq \!\! K_1 g_2 \!\! = \!\! a_1 g_1 g_2 \!\! \subseteq \!\! G/K_3 = \!\! \!$$

Conversely, we may use the ideas above to construct examples of l-bands of l-groups. Let G be an l-group, E an l-band, and L a subset of H(G) with $\phi \colon E \longrightarrow L$ an order-preserving map onto L. For each $e \in E$, choose a distinct copy of the l-group $\phi(e)$, and let S be the disjoint union of all such l-groups. Then we may define multiplication and order as in (*) above. It is easy to check that S is a band of groups, and that the order on E agrees with the order defined on S. From Theorem 3, it remains only to show that S is an

l-semigroup. But S is clearly a lattice of lattices, and so a lattice. That multiplication distributes over the lattice operations follows because this is true in both E and in each $\phi(e)$.

We will conclude with two simple examples of unions of l-groups which are not l-bands of l-groups. Let $S = \mathbb{R}^+ \times \{0, 1\}$ equipped with the following total order:

$$(r, \alpha) < (s, \beta)$$
 iff $r < s$ or $r = s$ and $\alpha < \beta$.

Define multiplication on S by letting

$$(r, \alpha) \cdot (s, \beta) = (rs, \alpha\beta).$$

Then S is a band of the groups $\mathbb{R}^+ \times \{0\}$ and $\mathbb{R}^+ \times \{1\}$ and is a natural l-semi-group with idempotents (1,0) and (1,1). However, condition (2) of Theorem 3 makes it obvious that S is not an l-band of l-groups. Consider the ordered set S again with the following multiplication:

$$(r, \alpha) \cdot (s, \beta) = \begin{cases} (rs, 0) & \text{if } rs < 1 \\ (rs, \alpha\beta) & \text{if } rs \ge 1 \end{cases}$$

Then S is a union of the *l*-groups $\mathbb{R}^+ \times \{0\}$ and $\mathbb{R}^+ \times \{1\}$ but is not a band of groups.

Indiana University, Indiana 46805, U.S.A.

REFERENCES

- [1] A. Bigard, K. Keimel, and S. Wolfenstein, Groupes et Anneaux Réticulés, Springer-Verlag, Berlin, 1977.
- [2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, AMS, Providence, 1961.
- [3] P. Conrad, Lattice-ordered groups, Lecture Notes, Tulane Math. Library, 1970.
- [4] C. C. Edwards, The greatest idempotent separating and the minimum group congruences on an orthodox semigroup, to appear.
- [5] L. Fuchs, Teilweise geordnete algebraische strukturen, Vandenhoeck and Ruprecht, Göttingen, 1966.
- [6] N. Kimura, The structure of idempotent semigroups (1), Pacific J. Math. 8(1958), 257-275.