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CURVATURE IN ELLIPTIC SPACE S,

By M. A. Soliman

i. Introduetion

Let (F, g) be an oriented compact connected n-dimensional Riemannian man-
ifold. To each p-form w on F, there is associated the (p+1) —form dw and
the (n—p)— form =w respectively, * being the Hodge operator.

The exterion codifferential ¢ is then defined by

dw=(-1) + D, b
M being the inverse mapping to #([2], [3], [4]). The Laplacian 4 on p-forms
is given by

dw=(Di+iD)w. {(2)
We say thalt ZER belongs to spec@ (4) if there is a nontrivial p-form w on
F such that

dw=2Aw. (3
The general problem is to exhibit spec@) (4) for a given (F, g). Up to now,
little is known. Spec(") (4) is known just for the hypersphere. Recently [5]
it has been proved that for a unit sphere of the Euclidean space E spec(l) (4)
equal to 2. There are no general methods for solving the general problem. We
are going to use the stokes theorem

| D=0 @
F

where ¢ is an (#—1) form.

Consider an 3-dimensional projective space P, refered toa moving frame {4,)
of four linearly independent analytic points A, A, As A, Aninfinitesimal
displacement of such a frame is determined by the equations.

dA;=0] A, G, j, k=1 2,3, 9 ®)

where the one-forms cuf (Praff’s differental forms) are invariant one-forms of
the projective group PG(3, R) whose structural equations have the form
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s B 3
Dw: =w, /\cui. 6
A homogeneous space S;=(Ps, Hf ) is called an elliptic space if Hi is a sub-

group of the group PG(3, R), the transformations in the subgroup H"i do not
move a non-degenerate imaginary quadric (absolute) ¢. We choose a moving
frame conjugate to any arbitrary manifold embedded in S, as a normalized polar
tetrahedron {4;}. In such moving frame, the absolute ¢ is determined by the

equation
4 i\2
_}_—i‘ (x ) =0. €))
=
The conditions of the stationary subgroup H ? are
£ . 7 -
w; =0, w; +w; =0 (8)

2. Linear forms on surface

Let F be a closed surface with null Gaussian Curvature. We are going to
investigate its coordinate neighbourhood UCF. To each point A EF, let us
associate a moving normalized polar tetrahedron {A;] such that the points A,
A, are in the tangent plane to the surface F* at the point A4,.

The fundamental equations of a moving tetrahedron are :
dAl:a)f Ag-’rm:z A, wi =0,
dA,=w, A+ Agtwy A,
dA3:m; Aﬁ»wi Az-i-ngq, ©)
dA,=ws Ay, Ay
The differential equation of the surface F in the first differential neighbour-
hood is
w]=0. (10)
Exterior differentiation and using Cartan’s Lemma [4] we get,
w; =acu;3 - ,80)?
w‘; =,6mf +rw::. D

The Gaussian curvature of the surface F is given by
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2 1 2 4, 2
e Doy, oy /\wl_+w3 A,
cu'I /:\mf cuf /,\wii
=l+ay— {32. a2

Hence the differential equations of the surface # in the second differential

neighbourhood are
+Bw .
(13)

with
1+ar—,82=0.
The purpose of this work is to prove the following
Let (F, g) be a closed surface with null Gaussian curvaiure in

THEOREM.
elliptic space S,, g being lhe induced metric. Let ftEspec(l:j (4. Then the mosi

general eigenvalue satisfying Aw=Riw, is that 2=0.

On the surface F, be given a 1-form w in U.

PROOEF.
2 3
a=aw; +bw;, G
@, b+ : U—R being functions. They are delined by
da!—bcug :almi +cz2cuf,
: (15)
db+a(u; :blcuf +bgwf.
The exterior differentiation implies
3 2 3 3
{dafl— (az—f—bi)mz} Aw| + {daer(al—bz)mz} Aw| =0. (16)
3 2 3 3
[db,+(a,~beiy} Aar| +{dby+ (e, B, | Aw) =0,
Applying here Cartan’s lemma we get the functions.
a!”-. bk]‘ : U—’R SuCh that
da, — (@, +b o, =ajo) + '5“4125'-‘:13 ,
da,+(a, —-bgjwi = alzwf +(z:,2w:: :
(173

3 2 3
db+(a,—b)w, =bj 0, +b,,0,,
3

db,+ (@, +b w, :bnwf +t}32wf.
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The consequences of exterior differentiation of (17) are
(day, — 2ay,+b, Doy ) Aos: + [day,+ (2~ = b wy | Aoy =0,
dayy+ (@)~ a,)—b,)w, | Aw; +(day,+2ay,—by)wy ) Aws =0,
(a8, + (2, —28,,)05 ) Ay +{dby,+ B+ —by)w; | Aw; =0,
{db)y+ @y By~ By | Ay + by + @25, )0 | Moy =0,

Using Cartan’s lemma equations (18) give the existence of functions
Ai, B, : =U——R such that

day — (2a,,+b, Dwsy = Ay + A,
day,+ (@) =y, blz)“"gz = Az“"i +A3“’:; ,
da,,+(2a,— b,_,_,)cug =A3wf +A4w“1' ;
dby,+(@y,~2b, )0, =Bw) +Byw,,
dbyy+ (@py+ by —by)w = Bow, + By,
db,,+ (a22+2b12)w; =Bswi -|-B40J:i s
Now for 1-form, we have

*(pcuf +qw?)= —qw} +pwi'

* poy +qcu?) =qwf —pors.
dw=(""DxD—Dx"'Dow.

In our case we have
m=amf+ bmf,
2. 3
Do=(b,—a)w] Aw|,
*Dw=b;—a,,
2 3
D+Dw= (b}, —a Do + (b,—a,)w;,
-1 2 2
*  DeDory=(b,—ap)w) — (b —ap)w|,
2 3
*w=—bw, +aw,
2 3
Dray= (bz+a1)“’1 Awy

= |
* D*m:b,_,—ka[

(18)

a9

(19
(20)
(2D

22
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=1 2 3
Dx "D w=(a; +bw; + (@, +byw;. 23

Hence for the 1-form w the Laplacian
do=— (@, +); — by + b, (24)
If the form w satisfying (3), then
ay+8n=—2a, by+b,=—1b. (25)

Because of equations (19) we get
A\ +Ay=—2e, Ay+A=-1a,

B,+By=—1b,, By+B,=—1b, (26)
For a general form w we can get
DD ((a,—5,)°+ (@ +5)%) =210y, ~by)"+ (@)= b,) +
+ (@t by )+ @yt b)) 0 N
+ (=20 (G~ 8,)"+ (2, +8) "} 0 Aawy
Using the stockes theorem on D+Dw, we get
a, —b,=0, a,+b,=0.
1= b1p= 01y by =yt by =gyt by, =0.
From which follows that
a1+ ay,=0, b);+by=0. @n

Comparing (27) with (25) it follows directly that
A=0.
This proves our theorem.
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