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CHARACTERIZATIONS OF UNIFORMLY CONTINUOUS AND
CAUCHY-REGULAR FUNCTIONS USING NETS

By Ray F. Snipes

A function from a uniform space to a uniform space is a Cauchy-regular (C-
regular) function if it preserves Cauchy filterbases. The class of C-regular func-
tions is (strictly included) between the class of uniformly continuous functions
and the class of continuous functions. A previous paper (see [3]) presents some
basic properties of C-regular functions, demonstrates that some of the most
useful theorems about uniformly continuous [lunctions also hold for Cregular
functions, and shows that many functions which occur in analysis are C regular
but not uniformly continuous.

The purpose of this note is lo charactlerize C-regular functions in terms of
nets and to give, for the sake of comparison, net characterizations ol continuous
and uniformly continuous functions. Examples are given to illustrate the useful-
ness of the net characterization of uniform continuity.

1. Clasgsification of nets in a uniform space

Let (X, #) be a uniform space (see [2]). A net (x;) in X, with directed set
(D, =), is convergent if there is a point ¢ in X such that: for ecach set U in
#, lhere exists an element Jy, in D such that

dgeD and ¢ >d;—>(x; a)EU.
We also say (x;) converges to a, and write (x;)——a. A net (x;) in X is Cawchy
if: for cach set U in #, there exists an element J, in D such that

d;, 0,0 and 7., (5‘.'—,_.‘;‘(5[‘,:-’)’(.755‘, xr;k)EU.

Two nets (x;) and (y;) inX are pareilel, written (x)|l(y,), 1if they have the
same directed set (D, =) and if: for each set U in #/, there exists an clement
J; in D such that

€D and d>d,;—> (x4 yEU.
Finally. two nets (x;) and (y;) in X are equivalent, writlen (x)~=(yy), il they

have the same directed set (D, =) and if: for each set U in #, there exisls an
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element d; in D such that
0y. 0,€D and ¢, 0,20y=—(x;, ¥;)EU.
As an immediate consequence of these definitions we have the following remark

which indicates how parallel and equivalent nets are related.

REMARK. Let (x;) and (y;) be nets in X with the same directed set (D, =).
Let eeX. Then:

(1) (x5)—a—>(x,) is Cauchy.

(2) (x| Cxp).

3} (xp) is Cauchy &> (x)=(x;).

) (xp—a and (yp)——a=—— )=y,

(6) ==l (¥y.

(6) (x)=@;=—>(x,) is Cauchy.

(7) (x;) and (y;) are Cauchy and (x;) ())<= (x)=().

® (xp)—a and GPIV—G—a.

(9 (xp) is Cauchy and (xp|[(yz)—>(yy) is Cauchy.

0 epliyp=Plxy.

A Gp=0p=0p=(xy.

2. Net characterizations of continuous, C-regular, and uniformly continuous
functions

The criterion for continuity in terms of nets can be stated as follows (see [2],
p.86: and [1]).

THEOREM L. Let (X, .5 ) and (Y, .5 ) be topological spaces, and let f:
X—Y be a function from X to Y. Then the following arve equivaient:
(1) f is continuous.
(2) 1 preserves convergent nels and their limils, i.e., if (x;) is a net in X and
xEX such that (x;5——x, then (f(x:))—f(x). When (Y,.5 ) is a T-space,
(1) and (2) are each equivalent to: -

(3) 1 preserves convergen! nels, i.e., if (x5) is a convergeni netf in X, then

(f(x3)) is a convergent neiin ¥.

Before characterizing C-regular functions in terms of nets, we recall several
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definitions. Let (X, %) be a uniform space. A filterbase #" in X is Cauchy
if: for each set U In %/, there exisls a set N in " such that NxXNCU. Two
filterbases #” and # in X are equivalent, written # ~.4#, if: for every set
U in #/, there exists sets N in o/ and M in .# such that N xMCU.

THEOREM 2, Let (X, %) and (¥, 7) be uniform spaces. Let f:X—Y be
a function from X inte Y. Then the following are equivalent:

(D) f is C-regular (f preserves Cauchy filterbases), i.e., if A4 is a Cauchy
filterbase in X, then the filterbase [ A" ={F[N] : Nes#"}, where f[N]
={f(x) : xEN}, in Y is Cauchy.

(2) f preserves equivalent fillerbases, i.e., if A4 and A& ave equivalen! fill-
erdases in X, then [ and f|.#) are equivalent fillerbases in Y.

(3) f preserves Cauchy nels, i.e., if (x;) is a Cauchy net in X, then (f(x5))
is @ Cauchy nel in Y.

(4) f preserves equivalent nets, i.e., if (x5) and (y;) are equivalent nels in
X, then (flxy)) and (f{y;)) are equivalent nets in Y.

PROOF. We shall sketch the proof that (1)=—(2)—(4)—=(3)=—=(1). As-
sume (1). Let #7 and .# be filterbases in X such that # ~.¢#. Then # A
A =[{NUM : N and M&.#} is a Cauchy filterbase in X. By (1), the set
FIlA N =fIINUM : NE” and Me£)]1={ (INUM] : NeE# and Me.#}
={fINTUFIM] : N and Me#} =f[A# 1 \fl.#] is a Cauchy filterbase in
Y. It follows that f[.#7] and f[.#] are filterbases in Y with f[A#]~f[.#].
This proves that (1)=——»(2).

Assume (2). Let C-xa) and (ya) be equivalent nets in X each having the dire-
cted set (D, =). Consider the filterbases in X generated by these nets:

= {xé :deD and =0, - EOED}

A =1{{y;: 0ED and 024} : §,€D).
Since (x)=(y;), we have # ~.#. By (2), the filterbases
FIA"1={{f(x;) : d&D and (7250] 1 0,ED]
fL#)={{f(y;) : dED and =4, : J,ED)

in ¥ are equivalent. It follows that (#(x;))=(f(v;)). This proves that (2)—
(4).

Assume (4). Let (xa) be a Cauchy net in X. Then (xé):(xa-). By (4), we
have (f(x;))=(f(x;)) whence (f(x;)) is a Cauchy net in ¥. Thus (4)——>(3).
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Finally, assume (3). Let .#" he a Cauchy filterbase in X. Define the set
D(A)={(x,N) : s&€N and N7},
define the binary relation = on D(#7) by
(xp No)=(x, ND)EONCN, 3
and define the function g ,.: D(#7)——X by the correspondence g ,-(x, N)=x.
Then (g 4 =) isa net in X. Since #" is Cauchy, (g ,, =) is Cauchy. By (3),
the net (fog ,» =) in Y is Cauchy. It follows that the filterbase f[#7] is

Cauchy. Thus (3)—>(Q).

THEOREM 3. Let (X, %) and (Y, #7) be uniform spaces. Let f: X
a function from X into Y. Then the following are equivalent:

Y be

(1) f is aniformly continuous, i.e., for every set V in ¥, there exists a set U
in % such that: (z, NEU—(f(x). f(M)EV.
(2) f preserves parallel nets, i.e., if (x,) and (y;) are parallel nets in X,

then (f(x;)) and (f(y;)) are parallel nets in Y.

PROOF. First, we prove that (1)=>(2). Assume (1). Let (x;) and(y%) be
the parallel netsin X each having the directed set (D, ~). We must prove that
nets (f(x;)) and (f(y;)) are parallel. Of course, they have the same directed
set(D, =). Let VEZ? . Let UEZ as given by (1). Since (x;)|(y;). there exists
an element d in D such that: d €D and d=0y;—(x; y;) €U. But by our
characterization of U, we have: d€D and §=0,=—(f(x;), f(y;))€V. There-
fore, (f(x;))I(f(¥3)). Thus (2) holds.

Suppose (1) is false. Then there exists a set V in # such that: for every set
U in #, there exists an ordered pair (xy, y;) in U with (flxp), fOy)) &V,
Since # is a filterbase, (%, ©) is a directed set. Consequently, (x,:U&E%)
and (y, : UEZ) are nets in X. Moreover, (xy)[(y,) since (x,) and (y,) have
the same directed set (%, ©) and: for each set U in #, there exists an element
U in # such that

U'e# and UCU—>(xy., y;)EU.
On the other hand, (f(xy):UEZ) and (f(yy) : UEZ) are not parallel nets

in ¥ since: there exists a set V in 77 such that for every element U in #
there exists an element U in # such that UCQU and (f(xy), f(yy))&V. Thus

(2) is false. This proves that (2)—>(1).

In summary, continuous functions are precisely those functions which preserve
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convergent nets; C-regular functions are precisely those functions which preserve
Cauchy nets (or equivalent nets); and uniformly continuous functions are pre-
cisely those functions which preserve parallel nets.

3. Examples

Theorem 3 is useful in determining whether or not functions are uniformly
continuous. As an illustration, we show that a linear transformation f : X——Y
from a topological vector space (X, J) to a topological vector space (¥, 57),
each over the real or complex field XK, is uniformly continuous if it is
continuous at 0 in X. Note that two nets (x;) and (y;) in X are parallel if and
0. Let (x;) and (y;)
be parallel nets in X. Then (x;—y;)—0. Since f is continuous at 0 in X, we
have (f(x;—;))—f(0). Since f isa linear transformation, this becomes (f(x;)
—f(33;))—0 whence (f(x;)) and (f(y;)) are parallel nets in ¥. By Theorem
3, the function f is uniformly continuous.

As a final example, let (X, 5 ), (¥, 5 },), and (Z, 5 ) be topological vector
spaces over K and let f: X X¥Y——2Z be a bilinear (or a sesquilinear) function.
In [3], it was shown that f is continuous if and only if f is C-regular. Using
Theorem 3; we can easily show that if f is not identically zero, then f is not
uniformly continuous. Fix x; in X and y, in ¥ such that f(x, Yg) =257#0. Since
f is bilinear (or sesquilinear), we have %720 and y,#0. Consider the sequ-
ences (nets) (x,) and (y,) in X XY defined by

only if: they have the same directed set, and (x;— ¥5)

xn:(n%*:z—)(xo. ¥y and y,=nlxy ¥

Since - R J’n:%("u- yo), we have (xn— ¥,)—(0, 0) whence (x,) and (y,) are
parallel nets in X <¥. On the other hand,

Fa)~FO)=(nr ) Fay 39— Fzg 39=(2477) %

0

so (f(x,)—f(y,))—2z, Since 22,0, the nets (f(x,)) and (f(3,)) in Z are
not parallel. By Theorem 3, the function f is not uniformly continuous. A direct
verification of this is more tledious. It is rather interesting that a continuous
not-identically-zero bilinear (or sesquilinear) function preserves equivalent nets
but it does not preserve parallel nets.
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