Kyungpook Math. J.
Volume 23, Number 1
June, 1983

A NOTE ON CONTINUATION AND BOUNDEDNESS OF SOLUTIONS OF A NONLINEAR DIFFERENTIAL EQUATION

By H. El-Owaidy and A.S. Zagrout

A nonlinear second order differential equation is considered. Sufficient conditions for all solutions to be continuable and bounded to the right of an initial value $t_{0} \geq 0$ are given:

1. This note is considered with some properties of the solutions of the pesturbed nonlinear second order differential equation.

$$
\begin{equation*}
x^{\prime \prime}+f(x(t)) g\left(x^{\prime}(t)\right)=h\left(t, x(t), x^{\prime}(t)\right),^{\prime}=\frac{d}{d t} \tag{1}
\end{equation*}
$$

where $f: R \longrightarrow R, g: R \longrightarrow R_{+}, \quad h: I \times R^{2} \longrightarrow R$ are continuous functions and $R=(-\infty, \infty), R_{+}=(0, \infty), \quad I=[0, \infty)$.

We shall give sufficient conditions for all solutions of (1) to be continuable to the right of their initial value $t_{0} \in I$, and for all solutions $x(t)$ of (1) together with derivative $x^{\prime}(t)$ to be bounded on I.

DEFINITIONS. (i) By continuable we mean a solution which is defined on a half-line $\left[t_{0}, \infty\right)$.
(ii) A solution $x(t)$ of (1) is said to be oscillatory if it has no last zero, otherwise it is nonoscillatory.

Let

$$
\begin{align*}
& F(x)=\int_{0}^{x} f(s) d s \geq 0 \text { for all } x \in R \tag{2}\\
& G(y)=\int_{0}^{y}[s / g(s)] d s, g(0) \neq 0, \lim _{|y| \rightarrow \infty} G(y)=\infty \tag{3}
\end{align*}
$$

Our main assumptions are
(i) There exists a continuous function $u: I \longrightarrow R$ such that $h\left(t, x, x^{\prime}\right) \leq u(t)$
(ii) There exists nonnegative constant M such that

$$
\begin{equation*}
|y| / g(y) \leq M G(y) \text { for }|y| \geq 1 \tag{4}
\end{equation*}
$$

THEOREM 1. Under the conditions stated above, the solution $x(t)$ of equation-
(1) is continuable to the right of its initial t-value t_{0}.

PROOF. Let $x(t)$ be a solution of equation (1) with initial t-value $t_{0} \in I$. Suppose, on the contrary, that $x(t)$ can not be continued past the finite point $T>t_{0}, T \in I$. It sufficies to show that $x(t)$ remains bounded as t approaches T from the left.

Let $V\left(t, x, x^{\prime}\right)=G(y)+F(x)+C$ where C is a nonnegative constant. Then

$$
V^{\prime}\left(t x, x^{\prime}\right)=\frac{y h}{g(y)} \leq u[N+M G(y)]
$$

Integrating both sides from t_{0} to t and noting that $u(t)$ is bounded on $\left[t_{0}, T\right]$ we have

$$
v(t) \leq C_{1}+M \int_{t_{0}}^{t} u(s) G(y(s)) d s
$$

Thus

$$
G(y(t)) \leq V<C_{1}+\int_{t_{0}}^{t} u(s) M G(y(s)) d s
$$

Using Gronwall-Bellman inequality [1] there is a constant C_{2} depending on $u(t)$ but not on $G(y)$ such that for all $t\left[t_{0}, T\right)$

$$
G(y(t)) \leq C_{2}<\infty .
$$

Thus $G(y(t))$ remains bounded as $t \longrightarrow T$ from the left and so $y(t)=x^{\prime}(t)$ remains bounded as $t \longrightarrow T$ from the left. Consequently $x(t)$ is also bounded as $t \longrightarrow T$. Thus we have a contradiction to our assumption that $x(t)$ is not continued past (finite) point T. This completes the proof.
2. In this section we will prove a boundedness theorem for solution $x(t)$ of equation (1) \& their derivatives $x^{\prime}(t)$ by using a modification of the technique of the previous section. In addition to the given conditions we suppose that
(i)

$$
\begin{align*}
& \lim _{|x| \rightarrow \infty} F(x)=\infty \tag{5}\\
& y^{2} / g(y) \leq M G(y)+N_{1} \tag{6}\\
& |y| / g(y) \leq M G(y)+N_{2} \quad \text { for all } y \in R
\end{align*}
$$

(ii)

These follow from condition (3).
(iii) There are continuous functions $r_{i}: I \longrightarrow I, i=1,2$ such that

$$
\begin{equation*}
|h(t, x, y)| \leq r_{1}(t)+r_{2}(t)|y| \tag{7}
\end{equation*}
$$

for all $(t, x y) \in I \times R^{2}$

THEOREM 2. Let assumptions (2), (3), (5), (7) hold. Let $r_{1} \& r_{2}$ are integrable on I. Then for each solution $x(t)$ of equation (1) with initial t-value $t_{0} \in I$, .. (t) is bounded on $\left[t_{0}, \infty\right)$. If in addition condition (5) holds then $x(t)$ is bounded also on $\left[t_{0}, \infty\right)$.

PROOF. Let $x(t)$ be a solution of equation (1) with initial t-value $t_{0}, t_{0} \in I$. Multiplying (1) by $x^{\prime}(t) / g(x(t))$ and integrating on $\left[t_{0}, t\right] \subset\left[t_{0}, T\right)$, we get:

$$
\begin{align*}
& G(y(t))-G\left(y\left(t_{0}\right)\right)+F(x(t))-F\left(x\left(t_{0}\right)\right) \\
& \leq \int_{t_{0}}^{t} h(s, x(s), y(s)) y(s) / g(y(s)) d s \tag{8}
\end{align*}
$$

Using (6) \& (7), inequality (8) can be written in the form

$$
\begin{align*}
& G(y(t))-G\left(y\left(t_{0}\right)+F(x(t))-F\left(x\left(t_{0}\right)\right) \leq \int_{t_{0}}^{t}\left[r_{1}(s)+r_{2}(s) y(s)\right] \frac{y(s)}{g(s)} d s\right. \\
& \quad \leq \int_{t_{0}}^{t} r_{1}\left(M G(y)+N_{1}\right)+r_{2}\left(M g(y)+N_{2}\right) d s \\
& \quad \leq M \int_{t_{0}}^{t}\left[r_{1}(s)+r_{2}(s)\right] G(y) d s+\int_{t_{0}}^{t}\left(r_{1}(s) N_{1}+r_{2}(s) N_{2}\right) d s \\
& \quad \leq M \int_{t_{0}}^{t}\left(r_{1}(s)+r_{2}(s)\right) G(y) d s+m(t) \tag{9}
\end{align*}
$$

where

$$
m(t)=\int_{t_{0}}^{t}\left[N_{1} r_{1}(s)+N_{2} r_{2}(s)\right] d s
$$

Furthermore

$$
\begin{equation*}
m(t) \leq \int_{t_{0}}^{\infty}\left(N_{1} r_{1}(s)+N_{2} r_{2}(s)\right) d s=m_{0}<\infty \tag{10}
\end{equation*}
$$

Since $F(x) \longrightarrow \infty$ as $|x| \longrightarrow \infty, F(x)$ is bounded from below, say $F(x) \geq-K$. Let

$$
\begin{equation*}
V(t)=G(y(t))+F(x(t))+K \tag{11}
\end{equation*}
$$

Using (11), inequality (9) takes the form

$$
\begin{equation*}
V(t) \leq V\left(t_{0}\right)+m(t)+M \int_{t_{0}}^{t}\left[r_{1}(s)+r_{2}(s)\right] G(y(s)) d s \tag{12}
\end{equation*}
$$

Hence

$$
V(t) \leq V\left(t_{0}\right)+m_{0}+M \int_{t_{0}}^{t}\left[r_{1}(s) \div r_{2}(s)\right] V(s) d s
$$

by using (11) again. By using Gronwall-Bellman inequality there is, then, a constant C, depending on $r_{1}(t) \& r_{2}(t)$ but not on $V(t)$ such that

$$
V(t) \leq\left(V\left(t_{0}\right)+m_{0}\right) C,
$$

i. e. $\left(G(y(t))+F(x) \leq\left[G\left(y\left(t_{0}\right)+F\left(x\left(t_{0}\right)\right)+m_{0}\right] C\right.\right.$. It follow that $F(x(t))$ is bounded for $t \geq t_{0}$. The conclusion of the theorem follows from (5)

COROLLARY. If in addition to the hypotheses of Theorem 2 and $G(y) \longrightarrow \infty$ as $|y| \longrightarrow \infty$, then all solutions $x(t)$ and the derivatives $x^{\prime}(t)$ are bounded.

PROOF. From the proof of Theorem 2 we obtain

$$
V(t) \leq\left(V\left(t_{0}\right)+m_{0}\right) C<\infty .
$$

The boundedness of $y(t)$ then follows from the boundedness of $G(y(t))$ on $\left[t_{0}, T\right)$. An integration shows that $x(t)$ is also bounded on $\left[t_{0}, T\right)$. This completes the proof of the corollary.

THEOREM 3. If

$$
\begin{align*}
& x f(x)>0, \text { for } x \neq 0, f^{\prime}(x) \geq 0 \\
& h\left(t, x, x^{\prime}\right) \leq u(t), \lim _{t \rightarrow \infty} u(t)=0, \tag{14}\\
& g(y) \geq C>0 \tag{15}
\end{align*}
$$

and $x(t)$ is a bounded nonoscillatory solution of (1), then $\lim _{t \rightarrow \infty} \inf |x(t)|=0$
PROOF. It will be convenient to consider the equivalent system

$$
\begin{align*}
& x^{\prime}=y+\int_{t_{0}}^{t} h(s, x(s), y(s)) d s \tag{16}\\
& y^{\prime}=-f(x) g(y) .
\end{align*}
$$

Let $x(t)$ be a nonoscillatory solution of (1). Without loss of generality, we can assume that $x(t) \neq 0$ on $\left[t_{0}, \infty\right)$. Let $x(t)>0$ for $t \geq t_{1} \geq t_{0}$. A similar arguments hold if $x(t)<0$ for $t \geq t_{1}>t_{0}$. On the contrary, suppose that $\lim _{t \rightarrow \infty}$ inf $x(t) \neq 0$. Then there exist positive numbers $m \& t_{2} \geq t_{1}$ such that

$$
\begin{equation*}
m<x(t) \quad \text { for } t \geq t_{2} \tag{17}
\end{equation*}
$$

This condition together with (14) implies that

$$
f(x(t)) \geq A>0 \quad \text { for } t \geq t_{2}
$$

Thus from (16), by integration, we have

$$
\begin{align*}
y(t)-y t_{2} & =-\int_{t_{3}}^{t} f(x(s)) g(y(s)) d s \\
& \leq-A C\left(t-t_{2}\right) \tag{18}
\end{align*}
$$

Letting $t \longrightarrow \infty$ in (18) we obtain

$$
\lim _{t \rightarrow \infty} y(t)=-\infty
$$

Thus, for $t \geq t_{3} \geq t_{2}$ for some t_{3} sufficiently large

$$
x^{\prime}(t)<0 \quad \text { for } t \geq t 3
$$

Then from (16), by integration, it follows that

$$
x(t) \longrightarrow-\infty \quad \text { as } t \longrightarrow \infty .
$$

This, however, is a contradiction and hence

$$
\lim _{t \rightarrow \infty} \inf x(t)=0
$$

This completes the proof of the theorem.
REMARKS (1) It should be noted that x^{\prime} is not necessarily bounded on $\left[t_{0}, \infty\right)$; this follows from the fact that the equation

$$
x^{\prime \prime}+e^{2 t} x=x^{\prime}
$$

has the bounded solution $x(t)=\sin \left(e^{t}\right)$ with an unbounded derivative.
(2) No restriction condition on the forcing term $h\left(t, x, x^{\prime}\right)$ to be small is required.

Al-Azhar University
Cairo, Egypt

REFERENCES

[1] W. Schmaedeke \& G. Sell. The Gronwall inequality for modified stieltjes inlegrals, Proc. Amer. Math. Soc. 19(1968), 1217-1222.
[2] H. El-Owaidy, On oscillations of second order differential equalion, Kyungpook Math. J. V. 21 (1981) 117-121.

