A NOTE ON CONTINUATION AND BOUNDEDNESS OF SOLUTIONS OF A NONLINEAR DIFFERENTIAL EQUATION

By H. El-Owaidy and A.S. Zagrout

A nonlinear second order differential equation is considered. Sufficient conditions for all solutions to be continuable and bounded to the right of an initial value $t_0 \ge 0$ are given:

 This note is considered with some properties of the solutions of the pesturbed nonlinear second order differential equation.

$$x'' + f(x(t))g(x'(t)) = h(t, x(t), x'(t)), ' = \frac{d}{dt}$$
 (1)

where $f: R \longrightarrow R$, $g: R \longrightarrow R_+$, $h: I \times R^2 \longrightarrow R$ are continuous functions and $R = (-\infty, \infty)$, $R_+ = (0, \infty)$, $I = [0, \infty)$.

We shall give sufficient conditions for all solutions of (1) to be continuable to the right of their initial value $t_0 \subseteq I$, and for all solutions x(t) of (1) together with derivative x'(t) to be bounded on I.

DEFINITIONS. (i) By continuable we mean a solution which is defined on a half-line $[t_0, \infty)$.

(ii) A solution x(t) of (1) is said to be *oscillatory* if it has no last zero, otherwise it is nonoscillatory.

Let

$$F(x) = \int_{0}^{x} f(s) \ ds \ge 0 \text{ for all } x \in \mathbb{R}$$
 (2)

$$G(y) = \int_{0}^{y} [s/g(s)] \ ds, \ g(0) \neq 0, \lim_{|y| \to \infty} G(y) = \infty$$
 (3)

Our main assumptions are

- (i) There exists a continuous function $u: I \longrightarrow R$ such that $h(t, x, x') \le u(t)$
- (ii) There exists nonnegative constant M such that

$$|y|/g(y) \le MG(y)$$
 for $|y| \ge 1$ (4)

THEOREM 1. Under the conditions stated above, the solution x(t) of equation-

(1) is continuable to the right of its initial t-value to-

PROOF. Let x(t) be a solution of equation (1) with initial t-value $t_0 \in I$. Suppose, on the contrary, that x(t) can not be continued past the finite point $T > t_0$, $T \in I$. It sufficies to show that x(t) remains bounded as t approaches T from the left.

Let V(t, x, x') = G(y) + F(x) + C where C is a nonnegative constant. Then

$$V'(t x, x') = \frac{yh}{g(y)} \le u[N + MG(y)]$$

Integrating both sides from t_0 to t and noting that u(t) is bounded on $[t_0, T]$ we have

$$v(t) \le C_1 + M \int_{t_s}^t u(s) \ G(y(s)) \ ds$$

Thus

$$G(y(t)) \le V < C_1 + \int_{t_0}^t u(s) \ MG \ (y(s)) \ ds.$$

Using Gronwall-Bellman inequality [1] there is a constant C_2 depending on u(t) but not on G(y) such that for all $t[t_0, T)$

$$G(y(t)) \leq C_2 < \infty$$
.

Thus G(y(t)) remains bounded as $t \longrightarrow T$ from the left and so y(t) = x'(t) remains bounded as $t \longrightarrow T$ from the left. Consequently x(t) is also bounded as $t \longrightarrow T$. Thus we have a contradiction to our assumption that x(t) is not continued past (finite) point T. This completes the proof.

2. In this section we will prove a boundedness theorem for solution x(t) of equation (1) & their derivatives x'(t) by using a modification of the technique of the previous section. In addition to the given conditions we suppose that

$$\lim_{|x| \to \infty} F(x) = \infty \tag{5}$$

(ii)
$$y^2/g(y) \leq MG(y) + N_1 \\ |y|/g(y) \leq MG(y) + N_2 \quad \text{for all } y \in R$$
 (6)

These follow from condition (3).

(iii) There are continuous functions $r_i: I \longrightarrow I$, i=1, 2 such that

$$|h(t, x, y)| \le r_1(t) + r_2(t)|y|$$
 (7)

for all $(t, xy) \in I \times R^2$

THEOREM 2. Let assumptions (2), (3), (5), (7) hold. Let $r_1 \& r_2$ are integrable on I. Then for each solution x(t) of equation (1) with initial t-value $t_0 \in I$, x(t) is bounded on $[t_0, \infty)$. If in addition condition (5) holds then x(t) is bounded also on $[t_0, \infty)$.

PROOF. Let x(t) be a solution of equation (1) with initial t-value t_0 , $t_0 \in I$. Multiplying (1) by x'(t)/g(x(t)) and integrating on $[t_0, t] \subset [t_0, T)$, we get:

$$G(y(t)) - G(y(t_0)) + F(x(t)) - F(x(t_0))$$

$$\leq \int_{t}^{t} h(s, x(s), y(s)) y(s) / g(y(s)) ds$$
(8)

Using (6) & (7), inequality(8) can be written in the form

$$G(y(t)) - G(y(t_{0}) + F(x(t)) - F(x(t_{0})) \leq \int_{t_{0}}^{t} [r_{1}(s) + r_{2}(s)y(s)] \frac{y(s)}{g(s)} ds$$

$$\leq \int_{t_{0}}^{t} r_{1} (MG(y) + N_{1}) + r_{2} (Mg(y) + N_{2}) ds$$

$$\leq M \int_{t_{0}}^{t} [r_{1}(s) + r_{2}(s)] G(y) ds + \int_{t_{0}}^{t} (r_{1}(s)N_{1} + r_{2}(s)N_{2}) ds$$

$$\leq M \int_{t_{0}}^{t} (r_{1}(s) + r_{2}(s)) G(y) ds + m(t)$$

$$(9)$$

where

$$m(t) = \int_{t_0}^{t} [N_1 r_1(s) + N_2 r_2(s)] ds.$$

Furthermore

$$m(t) \le \int_{t_0}^{\infty} (N_1 r_1(s) + N_2 r_2(s)) ds = m_0 < \infty$$
 (10)

Since $F(x) \longrightarrow \infty$ as $|x| \longrightarrow \infty$, F(x) is bounded from below, say $F(x) \ge -K$. Let

$$V(t) = G(y(t)) + F(x(t)) + K$$
 (11)

Using (11), inequality (9) takes the form

$$V(t) \le V(t_0) + m(t) + M \int_{t_0}^{t} [r_1(s) + r_2(s)] G(y(s)) ds$$
 (12)

Hence

$$V(t) \le V(t_0) + m_0 + M \int_{t_0}^{t} [r_1(s) + r_2(s)] V(s) ds$$

by using (11) again. By using Gronwall—Bellman inequality there is, then, a constant C, depending on $r_1(t)$ & $r_2(t)$ but not on V(t) such that

$$V(t) \le (V(t_0) + m_0) C$$
,

i.e. $(G(y(t))+F(x)\leq [G(y(t_0)+F(x(t_0))+m_0])$ C. It follow that F(x(t)) is bounded for $t\geq t_0$. The conclusion of the theorem follows from (5)

COROLLARY. If in addition to the hypotheses of Theorem 2 and $G(y) \longrightarrow \infty$ as $|y| \longrightarrow \infty$, then all solutions x(t) and the derivatives x'(t) are bounded.

PROOF. From the proof of Theorem 2 we obtain

$$V(t) \le (V(t_0) + m_0)C < \infty$$
.

The boundedness of y(t) then follows from the boundedness of G(y(t)) on $[t_0, T)$. An integration shows that x(t) is also bounded on $[t_0, T)$. This completes the proof of the corollary.

THEOREM 3. If

$$xf(x) > 0$$
, for $x \neq 0$, $f'(x) \ge 0$,
 $h(t, x, x') \le u(t)$, $\lim_{t \to \infty} u(t) = 0$, (14)
 $g(y) \ge C > 0$, (15)

and x(t) is a bounded nonoscillatory solution of (1), then $\lim_{t\to\infty}\inf |x(t)|=0$

PROOF. It will be convenient to consider the equivalent system

$$x' = y + \int_{t_0}^{t} h(s, x(s), y(s)) ds$$

$$y' = -f(x) g(y).$$
(16)

Let x(t) be a nonoscillatory solution of (1). Without loss of generality, we can assume that $x(t)\neq 0$ on $[t_0, \infty)$. Let x(t)>0 for $t\geq t_1\geq t_0$. A similar arguments hold if x(t)<0 for $t\geq t_1>t_0$. On the contrary, suppose that $\lim_{t\to\infty}\inf x(t)\neq 0$. Then there exist positive numbers m & $t_2\geq t_1$ such that

$$m < x(t)$$
 for $t \ge t_2$ (17)

This condition together with (14) implies that

$$f(x(t)) \ge A > 0$$
 for $t \ge t_2$

Thus from (16), by integration, we have

$$y(t) - yt_2 = -\int_{t_2}^{t} f(x(s)) \ g(y(s)) \ ds$$

$$\leq -AC(t - t_2)$$
(18)

Letting $t \longrightarrow \infty$ in (18) we obtain

$$\lim_{t\to\infty} y(t) = -\infty$$

Thus, for $t \ge t_3 \ge t_2$ for some t_3 sufficiently large

$$x'(t) < 0$$
 for $t \ge_{t3}$

Then from (16), by integration, it follows that

$$x(t) \longrightarrow -\infty$$
 as $t \longrightarrow \infty$.

This, however, is a contradiction and hence

$$\lim_{t\to\infty}\inf x(t)=0.$$

This completes the proof of the theorem.

REMARKS (1) It should be noted that x' is not necessarily bounded on $[t_0, \infty)$; this follows from the fact that the equation

$$x' + e^{2t} x = x'$$

has the bounded solution $x(t) = \sin(e^t)$ with an unbounded derivative.

(2) No restriction condition on the forcing term h(t, x, x') to be small is required.

Al-Azhar University Cairo, Egypt

REFERENCES

[1] W. Schmaedeke & G. Sell. The Gronwall inequality for modified stieltjes integrals, Proc. Amer. Math. Soc. 19(1968), 1217—1222.

[2] H. El-Owaidy, On oscillations of second order differential equation, Kyungpook Math. J. V. 21 (1981) 117-121.