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EXTENDING CERTAIN SEMIRING HOMOMORPHISMS TO RING
HOMOMORPHISMS

By Louis Dale

1. Introduction

One of the more interesting aspects of any algebraic structure is the study of
homomorphisms of that structure. It is usually interesting to see what properties
of a structure are preserved under homomorphisms. In this paper we will be
cencerned with extending certain semiring homomorphisms to ring homomor-
phisms and determining what properties of the semiring homomorphism are
preserved under the extension. The results that we obtain will be applied ‘o
a proof of a universal mapping property of halfrings. In order to extend a
semiring homomorphism to a ring homomorphism we must first embed the
semiring in a ring.

2. Fundamentals

A semiring is a set S together with two binary operations called addition
() and multiplication - such that (S, +) is an abelian semigroup with a zero,
(S5, +) is a semigroup, and multiplication distributes over addition from both
the left and the right. In order that a semiring S be embedded in a ring it is
necessary and sufficient that S be cancellative. We call a cancellative semiring
a4 halfring. To embed a semiring H in a ring we proceed as follows. Let H*=
Wk, B)|h, k&H) and in H* define (k, k)=, k') if and only if A+-k'=h"+Fk.
This gives an equivalence relation on H*. Let H be the set of equivalence
classes in H*. In H define

(h, B)+C0', B)=(h+h', k+%) and
(h, BY(R', ')=(hh'+ kk', hE +kE"),
then H is a ring with respect to these operations. The map ¢ : H—H given
by ¢(h)=(h, 0) isa well defined injection and it follows that H is embedded in
H. We identify the ordered pair (&, &) with k—k Then H=h—k|h, kEH) is
called the ring of difference of H and is the smallest ring containing H. Since
H is the smallest ring containing H, we will call H the closure of H.
A nonempty subset I of a semiring S is called an ideal in S if I is a subs
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emiring of S and SIC 7 and ISCI. An ideal I in a semiring S is called a
kideal if acl, =S and e+d&I imply #&1. These ideals are also called sub-
tractive. Now if A is an ideal in a halfring H, then it is easy to sce that A=
{¢,—a,la;=4) is an ideal in H. Conversely, if B is an ideal in H, then BNH
is an ideal in H. It is not generally true that if A is an ideal in H, then A=
ANH. This can happen if and only if A is a kideal.

3. Halfrings and homomorphisms

Let H and X be halfrings, H and K their closures, and f: H——K a halfring
homomorphism. Define f: H—K by hf=(k;—h,)f=h f—h,f, where h=h —h.,

THEOREM 3.1. If f:H——K is a halfring homomorphism, then f: H—K
is a ring homomorphism suck that hf =hf for all hEH.

PROOF. First we show that f is well-defined. Suppose x=x —x,, y=y, -5,
H and x=y. Then %, +y,=x,+y and it follows that x;f+y,f=(x +y.)f =(2,+
y ) f=%f+y f. Consequently,

#f =y =2 ) f =%, =2, =y, =9, F = —3:)F =3f
and it follows that f is well defined. Now
(et2)f =[x, —2) -+ (9~ 9 )1 F
= [(x, +9) — (ot 3,)1 F
=(x;+3) )~y ty0)f
=x, f+y,f— (2 +3,0)
=2 f~x,0)+ O f-5.1)
=(x,=x)f + (0, —y)f
=xf+yf
and
@) f=1(x,— 2,03~ )1 F
= [(x, 3, +2o¥5) — (X 95T 2,9 )1 F
= (2, +259,)f — (2,5 2,90
=, O+ @ 3o )= ey IO = (o, )
=(x, F=2, )0 F=3,1)
= =2 ) f =) f =G



Extending Certain Semiring Homomorphisms to Bing Homomorphisms 15
Therefore f is a ring homomorphism. Now if k&H, then h=%—0 and kf=(k
—0)F=hf —Of =kf.

DEFINITION 3.2. If f: H—K is a halfring homomorphism, then the map
71 H—K given in Theorem 3.1 is called the extension of f to H.
Now suppose g : H—— K is a homomorphism of rings. Then gy the restriction
of g to H is a homomorphism. If x=x,—x,EH, then
TE=H\ G~ B X\ Gy~ ol g = (B~ X gy =Xy :
and it follows that g,=g. Thus cach halfring homomorphism f/: H——K induces

a ring homomorphism f : H—K and conversely each ring homomorphism g :

H—K gives a halfring homomorphism gy H—K such that g,=g. If H
and K are halfrings and f, g € Hom(H, K), then f, ¢ = Hom(H, X). It is
clear that Hom(H, K) is semigroup under addition defined by
a(f+g)=af+ag. Likewise Hom(H, K) is a group. Let x=x,—x,€ H. Then
#(f+g)=xf+xg

= -2 )+ (g —x.8)

=(w, f+xg) - (,f+2,8)

=x,(f+g)—x,(f+g)

=~ x)(f+g)=2(F+g).
Consequently, f-+g=f+g. Thus the map ¥ : Hom(H, K)——Hom(H, K) given
by f¥ =7 is a homomorphism. This proves the following theorem.

THEOREM 3.3. If H and K are halfrings with closures H and K, then the

map ¥ Hom(H, K)——UHom(H, K) given by f¥=F is an isomorphism.

We want lo show now that £ is an isomorphism if and only if F is an iso-
morphism. If f: H—K and f is injective it is clear that f is injective since
Rf=hf for all kR&H. On the other hand, suppose f is injective and hf=Ch,—hy)
F=0. Then Ef'z!zlf—kgfzo and it follows that k f=h,f. But f is injective
so that & =h, Consequently, f_?—:kl*h.ll'o and it follows that f is injective.
Now if f is surjective then it is elear that f is surjective since XCK. On the
other hand, suppose f is surjective and yEX with ¥=¥;—¥y Then there exists
%, %,&H such that » f=y, and x,f=y.. Consequently,

Y= Vo= E f =Xy f = (8 =5 ) [ =«F
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and it follows that f is surjective. This proves the following theorem.
THEOREM 3.4, If f: H—K is a halfring homomorpiism with extension [,
then f is an isomorphism if and only if F is an isomorphism.
We want to consider now compositions of homomorphisms and their extensions.
THEOREM 3.5. Le! f: H—K and g: K——L be halfring homomorphisms
with extensions | and g. Then

1. fe=Fg

2 1,=1y

. (P i 7 enists.

PROOF. (1) Let h=h ~h, € H. Then W(7g)="h)g= k) F1g = f-
h)g=Chfg— U flg=h,(fg)—h(fg)={h;— B)(fg)=h(fg). Consequently, we

have fg= fg.
(2) Now hly=(h —h)ig=h1,—hlgp=h —h,=k=klgand it follows that Iy=
L,
(3) From (1) and (2) we have f(f—:l_):ff?j):igzlﬁ and (fh__l)f:(f—_%:
Iz=1g and it follows that 7 hH=(H

We now give an application of Theorem 3.5. Recall that an exacl sequence

@ 4
0—A—B—C—0

is said to split if there exist 7 : B—4 such that ay=1,.

THEOREM 3.6. Swuppose

o 8 . W B
A:0—H—K—L—0and B:0—H—K—IL—0
are exacl seguwences. Then the sequwence A splils if and oenly if the sequence B

splits.

PROOF. If B splits, then it is obvious thal A splits since a=&y,. Now suppose
A splits and 7 : K——H such that ay=1,. Then y: K——H and by Theorem

3.5, a’?:a?:iﬂzlﬁ and it follows that B splits.

4. A uuiversal properiy for halfrings

A nonempty subset S of a ring R is called muliiplicative provided a, bE S
implies ab & S. If S is a multiplicative subsel of a commutative ring R, then
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the relation defined on the set RxS by (r, s)~(#", s) if and only if #(»s"—#"s)
=0 for some #&S is an equivalence relation. If we denote the equivalence class
(r, s) by _1_'—;- then the set of equivalence classes of RS, denoted Ry, is a

ring under the operations of addition and multiplication defined by

LI rs'+7's - L)( Cal 7‘)_ vy’
s & &y : 5N &S 55

respectively. Also, the mapping ¢, : R——Rg given by rqﬁsz%- (for any s&S)
is a well defined homomorphism of rings such that s@_is a unit in R for every
s&S. If H isa halfring and S is a multiplicative subset of H, then it is rather
straightforward to show that Hg isa halfring. If P is a prime ideal in H, then
P is a prime ideal in H. Consequently, P and P are multiplicative subsets of
H and H respectively. If we let S=P—H and S=P—H, then from the defi-
nition of prime ideal it follows that S and S are mulliplicative subsets of H and
H respectively. The universal mapping property for rings states that if S is a
multiplicative subset of a commutative ring R, T is a commutative ring with
identity, and g : R—T is a homomorphism such that sg is a unit in 7' for all
s&S. then there exists a unique homomorphism g* : Rg——7 such that ¢ g*=g.
Our aim is to extend this property to halfrings using the results in section 3.

THEOREM 4.1. Let P be a prime ideal in a commulative halfring H, S=P—
H. ond K a computative halfring with an ideniity. If f: H——K is a halfring
homoniorphism such thal sf is a wnil in K for all s&ES, then there exists a
unique halfring howomorphis,, ¥ . He——K such that ¥ =f. The halfring H
is completely determined by this properiy.

PROOF. Let F:H——K be the extension of f. Now P is a prime ideal in
H. Let S=P—H. Then Hg is a commutative ring with identity. Let ¢ : H
Hg. Now sf=sf is a unit in K for all
s&S. Thus by the universal mapping property for rings, there exists a unique
homomorphism ¥ : Hz——X such that ¢ ¥ =7. By Theorem 3.3, Hom(Hg, K)
=Hom(Hg, K). Hence ¥ : Hc—K, where W:WHS is the unique homomor-

»He- be the extension of ¢, : H

phism such that ¢5sw:f‘ The map ¥ is given by (%) 'ﬁl_":f(?)f(s‘fl and it
follows that ¥ is given by ( 3 ) ?Ifzf('r)f(s)_l.

S5
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Thus we can extend the universal mapping property of ring to halfrings.
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