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A BOUND ON CHARACTERISTIC FUNCTIONS OF
SIGNED LINEAR RANK STATISTICS
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1. Introduction
Let XNI, X e, XNN be independent r.v.’s (random variables) with den-

sity functions fyi, Fyo o Fywe respectively, and let R;}., 1<j<N, be the

NZ?

rank of |X .| among {|X,| 1 1=k<N}. We shall consider the signed linear

rank statistic

v
1) TN—;gc_wczNﬂ;li-sgn Xy

where Cyp Cyo ™% Cypy AT€ arbitrary regression constants; O Cpos ™ Gyp

are scores and sgn x=1 or —1 accerding as =0 or x<0.

The statistics of the type T;\'; are often used (see e.z., Hajek (1962), Hajek
and Sidalk (1967), chapters V and ¥ ) for testing the hypothesis H : fy,=fy,=
we=fyn=Fy and F (x)=7,(—x), against certain classes of alternatives. The

case When ¢y =cy,=--=¢,y =1 is well known.
Define for each N, N=1, 2, -,
. BR-ETL )
(].. 2) T‘N: 7 =y }N(X)ZPCTNSZ')

N
where ai, is either exact variance of Ti; or some normalizing constant.
It is well known (see e.g., Hijek and Sidak (1967), Hugkova (1970) and

Puri and Ralescu (1981)) that under suitable assumptions, TA has asymptoti-

oo, the standard normal distribution, i e., gim Ap=0where Ay
[ — o0

cally, as N

zsuplFM(x)—Qi(x)\ with the standard normal distribution function @(x). Ho-
. 7

wever, one needs more precise information than the asymptotic normality can

provide. For example, one may try to find (i) suitable order bounds for A N

or (ii) some polynomials Qj(x), 7=1, 2, =, r, such that

(1.3 sup| F ()= F ()| =0V ™",
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where, with the standard normal density function ¢(x),
an T Ry
(1.4) Fy@=00)+e() N 2 Q.

Such an expansion F_,\,(x) is typically called the Edgeworth expansion up to
(r+1) terms. Interested readers are referred to Bickel (1974).

An application of Esséen's smoothing lemma (see e.g., Feller (1971), p.538)
to our problems (i) and (ii) yields that for any y>>0 and >0

ol F () — B i . . B
(1.5) bliPlFN(x) F < = f _—y |¢V(f)_¢~.(t)|/ff|df+0(N (= E)/.’)
H1<yN . )

where ¢;, is the characteristic function of Iw and 6N, the Fourier-Stieltjes tr-

ansform of F,, is of the form

(1.6) b= 1+ = NTEQ),

with some polynomials Qj, 1=<j<lr. To attack above problems (i) and (ii), we
shall split the integral in (1.5) into two parts to obtain the following two facts;

Wn 18 ®=dy O/1Hd=oN ),
[t <logN

kL) i |63, D=y D1/ 1t1dt=0(N 3.
log N<|#]<FN

As Van Zwet (1982) has mentioned in a different context, proving (1.7) is
generally a difficult and highly technical affair, the difficulty lying not so
much in finding ¢, and proving (1.7) but in doing so under reasonably mild
assumptions. However, proving (1.8) is a problem of an entirely different
nature because it is essentially a smoothness property of the distribution func-
tion F;, and generally applicable methods for establishing it are not available.

The aim of this paper is to find a sufficient condition for (1.8) in the case
of signed linear rank statistic, restricting the Edgeworth expansion valid to
three terms (i.e., r=2). Because of (1.6), it is sufficient, in order to prove
(1.8), to show

(1.9) | 8, @1/lde=oN Y,

logN < [t <rN**

The method to prove (L.9) is a follow-up of van Zwet (1982). By accomplish-

ing (1.7) and also using (1.8), Puri and Seoh (1981a, 1981b) have derived

X
Berry-Esséen’s bound of order O(N™ %) and an Edgeworth expansion with
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remainder o(N _1), respectively, for a wide class of the signed linear rank
statistics including normal scores case. In forthcoming papers Seoh and Puri
(1983c, 1983d), Berry-Ess¢en’s theorem and asymptotic expansions shall be
established for the statistic under contiguous location alternatives.

2. Assumptions and main theorem

Let for any real numbers (>0, 8(ay;, - ayy L) denote the Lebesgue me-
asure 4 of {-neighborhood of the set {ay, @y, Eyntsthus 8layy, aye

ey - O=A{x: Ix—awi <L for some j).

ASSUMPTIONS: Suppose that there exist positive numbers ¢, C, @, 4, 7, 2
sequence f’N of densities and a sequence &, | 0 such that

N N 2

(A.1) E ICNJ~|2L'N, f:}__i' CNJSCN
N N,

(A.2) EllalezaN, j:Z'IczNjSAN

(A.3) Oay, @y = gy DD=INT for some (=N log N
N[ (f @) =Ty )

(A4 o st ks _ dx<Ne

\ ) j:lj f.i\t‘(x) N

(A.5) limsup [ 17y @ =Fy(~2)1dx=0

Let ¢, (#) denote the characteristic function of N—l"‘)(T;-—ET;), i.e.,
@0 ¢y (O=EexplitN (T - ET D).

Then our main theorem reads:

THEOREM 2.1. Under the assumptions (A.1) to (A.5), there exist posilive nuni-
bers B, 3 and v depending only on ¢, C, a, A, J and the sequence ¢y such that
for log N<|t|<yN"?

@2 16,y (O <BN ™,

In order to get Berry-Esséen bound of order O(N _M,), we need the conclusion
of the Theorem 2.1 for a domain log N<|¢| <rNI/2. But to get (2.2) on the
domain log NSI!IS}*NW. the assumption (A.3) is superfluous. Thus we get
the following corollary.
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COROLLARY 2.2. Suppose that the assumptions (4.1), (A.2), (A.4) and (A.5)
are satisfied. Then there exist posilive numbers B, B and y depending only on
¢, C, a, A and the sequence €, such that (2.2) holds for log N<_.|ﬂ§7’NU2.

To conclude this section we provide a discussion of Theorem 2.1. We shall
be briel in the following sequence of remarks because our Theorem 2.1 is par
allel to the result of Van Zwet (1982), which deals with the unsigned linear
rank statistics, and most of his discussion about his result can be applied to

ours.

REMARE 2.1. The standardization of T}: in the theorem is different from
the one in section 1. If the normalizing constant JNQ is of exact order N,
then the difference is of no importance and (1.9) follows immediately from
2 &

REMARK 2.2,  Assumption (A.1) may be replaced by

ot 2 , § ’

2:3) z|ch[ >c'N, ElchI <C'N
for positive ¢ and C” and for some s>2, 0<r<(s. For s=2, this is equivalent
to (A.1) and for s>>2 it is stronger. The same remark applies to the assumption
(A.2).

REMARK 2.3. Assumption (A.3) is well known from previous work of
Albers, Bickel and Van Zwet (1976) and Bickel and Van Zwet (1978). Its role is
to ensure that the scores @y, @y -+, @y do not cluster too much around too
[ew points.

REMARK 2.4. Assumption (A.4) is satisfied if a sequence (fy Fyo
Fyy) is contiguous to the hypothesis H : £y =fpo=""=Fyy=Sx for some choice
of fyo N=1, 2, -

REMARK 2.5. Under the case X . S
identically distributed with a common density _F'N, the assumption (A.5) may be

X;w are independent and

replaced by a weaker condition that
f S N (X y)
2.4 Ple<—= -
@ ( <fN<X.iv1)"‘fN(7XN1}
for some e=(0, 1/4) and d; is defined in (3.1). The condition (2.4) is used in
Albers, Bickel and Van Zwet (1976) to prove their Theorem 2. 2.

<1-el>1-0g
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3. Proof of main theorem

The proof of this theorem is a technically complicated affair and we shall
split it up in a series of lemmas. To avoid the laborious formulation in each
of these lemmas we adopt the following conventions. Whenever we assume that
one or more of the assumptions (A.1)—(A.5) are satisfied, it will be tacitly
understood that the numbers ¢, C, @, A and J occurring in these assumptions
are indeed positive and that ey | 0. In each lemma where they appear, B and
B8, are positive numbers which may depend on ¢, C, a, A, 4, {eN} and other
quantities specified in that lemma. Furthermore constants d,, d., ds, d;and d;

are defined by

9% . § _. [ dc
=150 P15 min{gergr 401
G.1) .
- 9a ; 3 5. dd. & 1 % &
=TeA 4= ——min | r I3, 05=— —min{d, 2d,.

In the sequel, we will use notations [x] as the integer part of x and [z]* as
the smallest integer greater than or equal to x. Also we should mention that,

for convenience of notation, we shall omit indices N in X N Ry

Ni* Cair i
fy; and fN,-, etc.

Noting that f, f, -, /y denote the densities of Xy, X, -, X, and that
R'*':-(Rf‘, R; RA}) and Z=(Z,, Z,, - Z,) denote the vectors of the
ranks and the order statistics of | X[, |X,|, -, |Xyl|, we define r.v.’s for
1<j<N

£UXD

= TRX T IED P~

Now we prove the [lollowing lemmas which are used in the proof of our main
theorem.

LEMMA 3.1. For any mieger N and real 1,
(3.2) FROIES A rr [1-2P,(1- P (1—cos(N ~*2tD}1')

PROOF. Since, conditionally given Z and R", sgn X,, sgn X,, -, sgn X,
are independent with probabilities
P=P(sgnX;=11Z, R")=1-P(sgnX;=-11Z, R"),

we have
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|6, (DI <E|ElexpitN ™~ (T~ E(T; 12, R )}z, R
:E{_f[ |E[eX§){ffN_1/2D].(Sgn X;—@P;~1)) |Z, RTI1
=E| H | P; exp(th*l/JD (2-2P))+(1- P)e\:p(z N IJ_D(-"P))I]
R

LEMMA 3.2, If the assumptions (A.4) and (A.5) hold, then for every e
(0.1/4) and (0,17,

P{e-'-,;P}.-'gl#e for at legst (yN|* indices j)>1—Be ﬁﬁ‘N.

PROOF, It follows by (A.4), (A.5), Chebyshev's inequality and Jensen's in-
equality that

7{,121 P(|2P,~11>1-2)
< sim E [ @@ -T@| +1F@-F(-») iz
( FO-FE’ Vo, 1 (= 2 oz
S fm e (=5} [* 17 -F-olds
1 e
2er+[ 1F0-F(-m)ldx.
N —o0

Define, for j=1, 2, ---, N, Yj:l if 128, -11>1-2¢ andY =0 otherwise. Then
Bernstein's inequality (see e.g. Hoeffding (1963)) yields

P(e=<P;<1-—e¢ at least [xN]* indices j)

=1-P(Y ;=1 at least N~ [yN] indices j)El—Ble_ﬁ‘-N.

I'he proof is complete.
A straightforward computation shows that the assumption (A.1) implies that

(3.5) !c] ’_4‘ for at least [, N1* indices /

and the assumption (A.2) implies that

(3.6) la|=>-}- for at least [9,N]* indices j.

Because the assumptions as well as the conclusion of the theorem are invariant
under simultaneous permutation of the ¢, XJ. and f;, j=1, 2, -, N, in the
sequel, we may, without loss of generality, assume Lhat
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B.7D le)|=>4 for §=1 2, -, [, NI%

Under the model we are discussing, X,, X,, -, X, are independent with
densities f,, f., -, f, and probabilities and expectations under this model are
indicated by P and £. We now introduce an auxiliary model under which X,
X, -, X, are independent and identically distributed with a common density
fand we shall write P, and £ lor probabilities and expectalions under this
model.

By comparing (3.2) and (2.19) of Van Zwet (1982), our plan of attack is
casily recognized. We shall show that, with large probability, there is a large
set J of indices, JCi1, 2, -+, N}, such that the sequences P; and D, for
J&J satisfy the conditions (2.17) and (2.18) of Van Zwet (1982). To do that
we already proved a necessary lemma (Lemma 3.2) and now need

LEMMA 3.3. Suppose that assumplions (A.3), (A.4) and the condition (3.7)
are satisfied and let 0., be defined by (3.1). Then for some {>N ~Ee log N

PO, D, -, Dy:0)=0,N{)<1-Be
PROOF. By Lemma 2.5 ol van Zwet (1982), it is sufficient to show thatl for
some positive numbers B and 3
(3.8) PyB(D,, Dy, -, Dy 0 <,ND<Be ™.

Under the model P, (R, Ry, -, R;.) equals each permutation ol (1, 2,
«+, N with probability 1/N!. Take { as in the assumption (A.3) and defline

o5 G I T dcN " ) "

(3.9) ¥ [mm (*_4(254—8) . ()1N A

We build up 6(D|, D,, -, D, :8) inr steps by successively choosing R_l"', R_j
R’f at random withoul replacement from {1, 2, -+, N| and running through
the sequence 6(D, : 0), 6(D,, D,:L), -, 8D, D, -, D.:0), If we choose
R; in such a way that D, is not conlained in the 2-neighbarheod of (D, D,
D,i.-;-]“f then @(Dl, By, s, D, Q:G(DL, Dy, -, Dy 1 L)+2L, This is the
case unless |Dkaj\ <2C for some j=1, 2, -, k-1, ie.,

k-1
(3.10) ckaRNGE jL__J_l (Dj—Z{, Dj-ir 25y,

Since k<<r=<C[d;N1*, (3.7) e¢nsures that |¢,|=>¢/4>>0 and hence (3.10) restricts
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@p. to a set A, which is the union of (£—1) intervals of length<<16{/c. The
set of a; in A, has {-neighborhood of Lebesgue measure at most (4—1) (16{/c+
2r), so the assumption (A.3) implies that the number of j for which ajGEAl_,

equals at least

[ NE-2 -1 S-+1))

&y

p =2 -1+ )]

Subtracting the (£—1) indices R,, R,, -, R, , chosen before R, and for
which the corresponding @; may well be outside A,, we find that the condition-
al probability that a, €A,. given R, -, R, ;. equals at least

k—1"
IN/2—(k—1)(A+8/0)—(k—1)
N—(&—1)

in view of (3.9). Asa, .GEA implies that 2{ is added to # at the k-th step, we

A L lfg ,_)~>

see that ﬂ(Dl, D::- D : {3/2F is stochastically larger than a binomial ran-
dom variable with parameters » and /4. Since B(Dl. D, -+, Dy : D=0(D,, D,
D_:{) and rd/4>=d,N, Bernstein’s inequality (see e.g. Hoeffding (1963))
ensures (3.8) for some positive B and 3 and the proof is complete.
Finally we need
LEMMA 3.4. If assumptions (A.2), (A.4) and the condilion (3.7) are satis-
fied and 0 is given by (3.1), then
N
PUD,\=% for at least [6,N1* indices )>1-Be ™"

PROOF. Take r=[N min(d;, dy/2]* and let j=1, 2, -, #. Under P, and

given Ri", R.';, s R; ;» the conditional probability that Iam‘lza/zl is at least
IN-G-D g \_5_3_

N-(j-1) —3 N 2

because j—1<r—1<0,N/2 and because of (3.6).

It follows that the number of indices 7<<r for which Iaﬂr|2% is stochasti-
cally larger, under P, than a binomial random variable with parameter » and
d,/2. Since rd,/2>25 N, Bernstein's inequality yields positive B and 5 such
that

(3113 PO(Eaﬁ,‘.]za/Li for at least [d,N]* indices jgr)zl—Be—’iA
But if j<r, then j<[d N]* Thus l¢;|>¢/4 by (3.7), which, together with
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(3.11), implies
Py(ID,|=ac/16 for at least [§,N1* indices j)=1-Be .
Again the proof is complete by Lemma 2.5 of Van Zwet (1982).

PROOF OF THEOREM 2.1. Recall that, in addition to the assumptions (A.1)
—(A.5), we may assume that (3.7) is satisfied for positive ¢, C, a, 4, J, |
and €, | 0. Also note that d,, d,, d3 d,and d; are defined by (3.1).

Choose EE(O. %) and define
(3.12) d=2""e(1-e)d’3,, D=((A+C)/3 )"

1
Let JC {1, 2, -, N} be the random set of indices j for which IDJ-ISD‘T and
let M be the cardinality of J thus

1
J=1i:1D,|<D%), M=|]|.
Because of (A.1) and (A.2), the sets (7 l¢;|>D"% and (j: |¢;|> D"} have
1 L
cardinalities at most CND™ 4 and AND ¢ respectively, and thus we have

(3.13) N.‘._>M2N—-(A+C)NDI‘1f=Nﬁ65N,
with probability one. Since d,<3/4, (3.13) implies that
(3.14) N/A<M<N.
Take ‘,=N_'3" log N and defline the event F by
F={e<P;<1-¢ for at least [(1-d)N]* indices j)
N{@WD,, D,, -, Dy :{)=d,N{}
N {|D;|=ac/16 for at least [d,N]* indices j}.
Then Lemma 3.2, Lemma 3.3 and Lemma 3.4 yield
(3.15) P(F)=1-Be ™,
where Bq:BL—I-BE—Q—B:5 and 34:min(,€1, Bsr B3) are positive numbers depending
only on ¢, C, a, A, 7 and the sequence &y.
Now we need a notation. Consider real numbers dy, dy, -, d, and p;, p,
= b, With 0=p.<1 for j=1, 2, -, m. For {>0 and 0<€<i1—, let 6d,, -,
dy iy s P8 denote the Lebesgue measure 4 of the {-neighborhood of

the set of those d}. for which the corresponding b; satisly eipj'él—e, thus
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0d, == d, s by = 0,38 O=4lx: |x-d| <e & =p;~1—¢ for somej}.
On the the set F in our sample space, the number of indices jE (1, 2, ---, N}
for which E"'-;PJ.‘;I—E as well as IDjlzac/lG equals at least (:'}4—65)N. Because
of (3.13), (64—255)1\’ ol these indices must also belong to J. Combining this
with (3.12) and (3.14), we [ind that
Lz PG ~P)D} >e(1—&)(ac/16) (9, ~ 20N

(3.16) ~10 29
=2 Te(l-&lac a“ledM,

for every sample point in F. Similarly we see that on F the number of indices

7 for which je&&J or Pj$ le. 1—-¢], equals at most 20N and hence
0D, jEJ: P, jET: L )>(0,— 40 )INL=d,ML/2.

Take =3M i log M. If M>2, then (3.14) ensures that 1/24<Z/{" <1 and
as @ is obviously n(mdecreasing in £

(3.17) 0(D;, JET : P, JET : L', )=(3,M/2)(L’/24)=0,M{’/48.
Since this is trivially true for M=1 also, (3.17) holds for every sample point
in #. Finally the deflinition of J implies that

(3.18) P D =_DM.
b=l

We have shown that on the set F' the sequences Dj and Py JjEJ, salisly
the conditions (2.17) and (2.18) of Lemma 2.3 of Van Zwel (1982) for values
d, D, e and 0"=d,/48 which depend only on ¢, C, @, A, ¢ and the sequence
e, Application of this lemma with & =1 yields the existence ol positive nu-
mbers b,, B; and §; depending only one¢, C, @, A, d and &y and such that for

every sample point in F,

i-.|b-

=

!{I (1-2P;(1-P;) {1-cos(N

J_

2tD)1 ]

=

f:: H [1 2P (1 P){l C(_]S(M ( ;'g )J 2tD) ]"<B ﬁf—j ﬂ;__"

p 1 3
for logM 7;’(\ ,%_’-;“)z 2|t|<<b M 2. An easy calculation based on (3.14) shows that

this implies that there exist positive B, and §; depending only on B and §;

such that on the set F

- 1 —B.louN
22UD))12 <BN

N
(3.19) _1']1 [1-2P(1-Pp {1 —cos(N ;
J:
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for log N<|t|<yN"”, where y=b,/16. Combining (3.15), (3.19) and Lemma
3.1, we find that for every ¢, log N iitlngs/ 2,

|y (D1 <B N PN B o AN < g~ FloN
with B=B,+B_. and S=min(8,, By). The proof is complete.
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