On the Tensor Products of C^* -Algebras ### By Chang-Ho Byun In the theory of von Neumann algebras, the classification of factors is an important problem. This is to classify factors to non *-isomorphic classes and is accomplished by finding algebraic invariants. Our study here is the classification of factors constructed from a product state of an infinite tensor product of C^* -algebras considered by E. Störmer [6], when the resulting factors are of type \blacksquare . Generally it is not known whether the tensor product of factors with type \blacksquare is of type \blacksquare . But as an application of our classification, we can prove that the tensor product of infinitely many factors with type \blacksquare is not of \blacksquare . Also our result contains the famous uncontably many non *-isomorphic hyperfinite factors with type III introduced by R. T. Powers (5). #### I. DEFINITIONS AND LEMMAS We refer the terminology, technical term and the results with respect to C^* -algebras and von Nenmann algebras, (1,4), infinite tensor products of C^* -algebras and von Neumann algebras, (2,4). If A is a C^* -algebra and s is a state of A, then (π_s, H_s, h_s) denotes the cyclic *-representation of A constructed by s such that $s(x) = (\pi_s(x)h_s, h_s)$ for $x \in A$ where π_s is the *-representation of A on the Hilbert space H_s and h_s is the generating unit vector in H_s . Let A_i : $i=1,2,\cdots$ be C^* -algebras with identity and s_i be a state of A_i . Then we can define $B=\bigotimes_{i=1}^\infty *A_i$, $t=\bigotimes_{i=1}^\infty s_i$, the infinite tensor product of A_i and of s_i . B is a C^* -algebra and t is a state of B. B is to be considered as the inductive limit of the finite tensor product $\bigotimes_{i=1}^{n-*} A_i$, $n=1,2,\cdots$, where the norm is the smallest C^* -crossnorm. Let H_i , $i=1,2,\cdots$ be Hilbert spaces and h_i be an unit vector in H_i , and M_i be a von Neumann algebra acting on H_i . $\bigotimes_{i=1}^{\infty} H_i$ denotes the incomplete infinite tensor product Hilbert space with reference vectors (h_i) and $\bigotimes_{i=1}^{\infty} M_i$ denotes the von Neumann algebra acting on $\bigotimes_{i=1}^{\infty} {}^{h_i} H_i$ which is an infinite tensor product of M_i , $i=1,2,\cdots$. It is well-known that H_t is isometrically isomorphic to $\bigotimes_{i=1}^{\infty} (ht) H_{s_i}$ and $\pi_i(B)''$ is spatially *-isomorphic to $\bigotimes_{i=1}^{\infty} \pi_{s_i}(A_i)''$. Moreover if $\pi_{s_i}(A_i)''$: $i=1,2,\cdots$ are fators, then $\pi_i(B)''$ is a factor. cf. [2]. If A is a C^* -algebra and s is a state of A, then we call s a factor state if $\pi_s(A)''$ is a factor. When s is a factor state of A, s is said to be of type X if $\pi_s(A)''$ is of type $X \times I_n$, $n=1,2,\cdots$, Π_1 , Π_∞ , Π_A , $0 \le \lambda \le 1$. If A is a C^* -algebra and G is a group, we say A is asymptotically abelian with respect to G if there exists a representation $g \longrightarrow \alpha_s$ of G as *-automorphisms of A and a sequence $(g_n : n=1, 2, \cdots)$ in G such that for $x, y \in A$ $$\parallel \boldsymbol{\alpha}_{s_n}(\boldsymbol{x}) \boldsymbol{y} - \boldsymbol{y} \boldsymbol{\alpha}_{s_n}(\boldsymbol{x}) \parallel \longrightarrow 0$$ when n tends to ∞ . Let G be a group of finite permutations of positive integer $i, e, g \in G$ is an one-to-one map of positive integers onto itself which leaves all but a finite number of integers fixed. Then if $A_t = A$ is a C^* -algebra with an identity $i = 1, 2, \cdots$, and $B = \bigotimes_{i=1}^{\infty} {}^*A_i$, G acts on B by $\alpha_s(\Sigma \boxtimes x_i) = \Sigma \boxtimes x_{s(i)}$ $g \in G$, and B is asymptotically abelian with respect to G. And also $t = \bigotimes s$ is a G-invariant strongly clustering state of B, where $s_i = s$ is a state of A, $i = 1, 2, \cdots$ cf. [6]. If s is a state of a C^* -algebra A with an identity, E. Störmer introduced the spectrum of s, denoted by Spec s, is the set of non-negative real numbers u such that, for a given $\varepsilon > 0$, there exists an $x \in \pi_s(A)$ for which $||xh_s|| = 1$ and $$||u(yxh_s,h_s)-(xyh_s,h_s)||<\varepsilon||yh_s||$$ for all $y \in \pi_s(A)$. We denote the support of a state s of A by $E_s = [\pi_s(A)'h_s]$, where [K] is the projection onto the closed linear span generated by K in H_s . h_s is then a cyclic and separating vector for the reduction $\pi_s(A)''\varepsilon_s$. Let \mathcal{I}_s be the modular operator for h_s relative to $\pi_s(A)''_{E_s}$. We define \mathcal{I}_s as an (unbounded) operator on H_s such that $$\Delta_s = \begin{cases} \overline{\Delta}_s & \text{on } E_s H_s \\ 0 & \text{on } (1 - E_s) H_s. \end{cases}$$ **LEMMA 1** ((7), Theorem 2.3, Corollary 2.4) Let A be a C^* -algebra with an identity and s be a state of A. Then Spec $s = Sp \ \varDelta_s$, where $Sp \ \varDelta_s$ is the spectrum of \varDelta_s in the usual sense. also we have that - (1) Spec $s = \{1\}$ iff s is a trace of A. - (2) Spec $s = \{0, 1\}$ iff the vector state $\mathbf{w}_{h_s} = (\cdot \mathbf{h}_s, \mathbf{h}_s)$ is \mathbf{a} trace on $\pi_s(A)'$ but s is not a trace of A. If M is a von Neumann algebra, we define $S'(M) = \bigcap Sp\mathcal{A}_w$ where w runs through the set of all normal states of M. Then we have the following result in (7) Theorem 3.1, Corollary 4.2. **LEMMA 2** Let A be a C^* -algebra which is asymptotically abelian with respect to a group G and s be a G-invariant strongly clustering state of A. Then - (1) Spec $s-\{0\}$ is a closed subgroup of the multiplicative group of positive real numbers R_+^\star , and - (2) $S'(\pi_s(A)'') = \operatorname{Spec} s$. If M is a factor, A. Connes has defined the algebraic invariant $S(M) = \bigcap Sp$ Δ_w where w runs through the set of all normal faithful states of M. cf [1]. **LEMMA 3** ([1] P. 188) Let M be a factor and E be a non zero projection of M. Then $S(M) = S(M_E)$. #### 2. MAIN THEOREM E. Störmer considered the product state of an infinite tensor product of a C^* -algebra as its copy. He obtained the following result in [6]: **THEOREM 4** Let $A_t = A$ be a C^* -algebra with an identity and $B = \bigotimes_{i=1}^{\infty} {}^*A_i$. Let s be a factor state of A. Then $t = \bigotimes s$ is a factor state of B. Moreover the followings are true. - (1) t is of type I_t iff s is a homomorphism of A. - (2) t is of type I_{∞} iff s is a pure state of A but is not a homomorphism. - (3) t is of type Π_1 iff s is a trace of A but is not a homomorphism. - (4) t is of type \prod_{∞} iff w_{n_s} is a trace of $\pi_s(A)'$ but s is neither a pure state nor a trace of A. - (5) t is of type \coprod iff w_{n_8} is not a trace of $\pi_s(A)'$. We can classify the case (5) of Theorem 4 more refinely using the Connes' invariant S, cf. (1). **THEOREM 5** Let A, s, B, t be as same as in Theorem 4. We suppose the case (5) of Theorem 4 occurs. Then we have (1) t is of type \coprod_{λ} : $0 < \lambda < 1$ iff Spec $s - \{0\}$ is a subset of a non trivial closed subgroup of the multiplicative group R_+^* . In this case $$\log \lambda = \max \{ \log \frac{u_1}{u_2} : u_1 < u_2, u_1, u_2 \in \text{Spec } s - \{0\} \}.$$ (2) t is of type Π , in all other cases. The proof of Theorem 5 is based on the following lemmas. **LEMMA 6** Let A, s, B, t be as above. Then we have $S'(\pi_{t}(B)'') = S(\pi_{t}(B)'')$ **PROOF** By the definition, it is clear that $S'(\pi_t(B)'') \subset S(\pi_t(B)'')$. If w_{h_s} is faithful on $\pi_s(A)''$, then $w_{h_t} = \bigotimes w_{h_s}$ is faithful on $\pi_t(B)''$. cf [2]. And so $Sp\Delta_t = Spec \ t = S'(\pi_t(B)'') \subset S(\pi_t(B)'') \subset Sp\Delta_t$, because of Lemma 2 and $\Delta_t = \overline{\Delta}_t$ in this case. Suppose w_{h_s} is not faithful. Then $S'\left(\pi_{\iota}\left(B\right)''\right)=Sp\,\varDelta_{\iota}=\left\{0\right\}\cup Sp\,\overline{\varDelta}_{\iota}=\left\{0\right\}\cup S'\left(\pi_{\iota}\left(B\right)''_{E_{t}}\right)=\left\{0\right\}\cup S\left(\pi_{\iota}\left(B\right)''\right)\right\}$ because of faithfullness of $w_{h_{\iota}}$ on $\pi_{\iota}\left(B\right)''_{E_{t}}$ and $E_{t}\in\pi_{\iota}\left(B\right)''$. Hence we can use Lemma 3 and the faithful case. $Q.\ E.\ D.$ **LEMMA 7** Let A_i : $i=1,2,\cdots$ be C^* -algebras with an identity 1_i and s_i be a state of A_i . Put $B = \bigotimes_{i=1}^{\infty} *A_i$ and $t = \bigotimes s_i$. Then we have $\bigcup_{i=1}^{\infty} \operatorname{Spec} s_i \subset \operatorname{Spec} t$ and $(\bigcup_{i=1}^{\infty} \operatorname{Spec} s_i - \{0\}) \cap \subset (\operatorname{Spec} t - \{0\})$ where P denotes the annihilator of P in the dual of R^* . **PROOF** We can identify h_i with $\bigotimes h_{s_i}$, and $\pi_i(B)$ " is identified with $\bigotimes_{i=1}^\infty \pi_{s_i}(A_i)$ " as in 1. For fixed i, let u be in Spec s_i . Then for given $\varepsilon > 0$ there exists an $x_i \in \pi_{s_i}(A_i)$ " with $||x_i h_{s_i}|| = 1$ such that, for all $y \in \pi_{s_i}(A_i)$, $$(\clubsuit) \mid uw_{h_{s_i}}(yx_i) - w_{h_{s_i}}(x_iy) \mid < \varepsilon \parallel yh_{s_i} \parallel.$$ $\text{Put } \ \bar{\boldsymbol{x}}_i = \boldsymbol{1}_i \otimes \cdots \otimes \boldsymbol{1}_{i-1} \otimes \boldsymbol{x}_i \otimes \boldsymbol{1}_{i+1} \otimes \cdots \in \boldsymbol{\pi}_i \ (B) \ ''. \ \text{Then } \ \| \ \bar{\boldsymbol{x}}_i \ \boldsymbol{h}_i \ \| \ = \ 1 \ .$ For $z \in B$ and for an arbitrary $\delta > 0$, there exists $z' \in A_i \otimes 1$ for a certain integer m, where \odot denotes the algebraic tensor product, such that $\|z-z'\| < \delta$. Then we have $$| uw_{n}(y\bar{x}_{i}) - w_{n}(\bar{x}_{i}y) | \leq u | w_{n}((y-y')\bar{x}_{i}) | + | uw_{n}(y'\bar{x}_{i}) - w_{n}(\bar{x}_{i}y') | + | w_{n}(\bar{x}_{i}(y'-y)) | \leq (u | x_{i} | + 1) \delta + | uw_{n}(y'\bar{x}_{i}) - w_{n}(\bar{x}_{i}y') |$$ where $y = \pi_t(z)$ and $y' = \pi_t(z')$. We can set $y' = \sum_{p=1}^{n} (\bigotimes_{q=1}^{n} y_{pq}) \otimes 1_{n+1} \otimes \cdots$ in $\bigoplus_{q=1}^{n} \pi_{s_q}(A_q)$ $\otimes 1$. Then, we have $$uw_{nl}(y'\bar{x}_{i})-w_{nl}(\bar{x}_{i}y')$$ $$= u \sum_{p} \prod_{q \neq i} (y_{pq} h_{s_q}, h_{s_q}) w_{h_{s_i}} (y_{p_i} x_i) - \sum_{p} \prod_{q \neq i} (y_{pq} h_{s_q}, h_{s_q}) w_{h_{s_i}} (x_i y_{p_i})$$ $$= u w_{hsi} \left(\left(\sum_{p} \prod_{q \neq i} (y_{pq} h_{sq}, h_{sq}) y_{p_i} \right) x_i \right) - w_{hsi} \left(x_i \left(\sum_{p} \prod_{q \neq i} (y_{pq} h_{sq}, h_{sq}) y_{p_i} \right) \right).$$ By (*) $$\left| u w_{h_t} \left(y' \bar{x}_i \right) - w_{h_t} \left(\bar{x}_i y' \right) \right|^2 \leq \varepsilon^2 \| \sum_{p} \prod_{q \neq i} (y_{pq} h_{s_q}, h_{s_q}) y_{p_i} h_{s_i} \|^2$$ $$= \varepsilon^2 \sum_{p \neq i} \prod_{q \neq i} (y_{pq} h_{s_q}, h_{s_q}) \left(h_{s_q}, y_{rq} h_{s_q} \right) \left(y_{p_i} h_{s_i}, y_{r_i} h_{s_i} \right)$$ $$= \varepsilon^2 \sum_{p \neq i} \left(\left(\bigotimes_{q \neq i} y_{pq} h_{s_q} \right) \otimes \left(\bigotimes_{q \neq i} h_{s_q} \right) \otimes y_{p_i} h_{s_i} \right) \left(\bigotimes_{q \neq i} h_{sq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \right)$$ $$\leq \varepsilon^2 \| \sum_{p} \left(\bigcap_{q \neq i} y_{pq} h_{s_q} \right) \otimes \left(\bigotimes_{q \neq i} h_{s_q} \right) \otimes y_{p_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} \| \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} \| \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} \| \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} \| \| \| \| \sum_{r} \left(\bigotimes_{q \neq i} h$$ Since δ is arbitrary, we obtain $u \in \text{Spec } t$. Let v be in $(\bigcup_{p} \operatorname{Spec} s_{p} - \{0\})^{\perp}$. Since $\operatorname{Spec} s_{p} - \{0\} = \operatorname{Sp} \overline{\mathcal{A}}_{s_{p}}$, we have $\overline{\mathcal{A}}_{s_{p}}^{vv} = E_{s_{p}}$. Also we know the equality $\overline{\mathcal{A}}_{t} = \bigotimes_{p=1}^{\infty} \overline{\mathcal{A}}_{s_{p}}$, cf [3]. But $E_{t} = \bigotimes_{p=1}^{\infty} E_{s_{p}}$, hence $\overline{\mathcal{A}}_{t}^{vv} = \bigotimes \overline{\mathcal{A}}_{s_{p}}^{vv} \overline{\mathcal{A$ **PROOF** of Theorem 5. By Lemma 2 and Lemma 7, Spec $t-\{0\}$ is the closed subgroup generated by Spec $s-\{0\}$ in R^* . By lemma 2 and 6, we have $S(\pi_t(B)''-\{0\}=\operatorname{Spec}\ t-\{0\})$. Then the condition: $S(\pi_t(B)'')-\{0,1\}$, i.e. t is of type \mathbb{H}_o , cannot occur. If this condition occurs, it is equivalent to Spec $s=\{1\}$ or $\{0,1\}$. By the way this is equivalent that t is of type \mathbb{H}_o or of type \mathbb{H}_o by Lemma 1 and Theorem 4. This contradiction shows that t cannot be of type \mathbb{H}_o . If t is of type \mathbb{H}_o , then the above consideration shows that Spec $s-\{0\}$ is a subset of $\{\lambda^n: n=0,\pm 1,\pm 2,\cdots \}$ and that $\log \lambda = \max \{\log \frac{u_1}{u_2}: u_2 > u_1, u_1, u_2 \in \operatorname{Spec}\ s-\{0\}\}$. The converse is obviously true. Other cases are those for t to be of type Π ,. Q. E. D. ## 3. EXAMPLES AND APPLICATIONS **Example 8** R. T. Powers [5] has introduced uncountably many non *-isomorphic hyperfinite factors with type \blacksquare , so called Powers' factors R_{λ} : $0 < \lambda < 1$. R_{λ} is constructed by the infinite tensor product $\otimes s$ where s is the faithful state of $M_{\lambda}(C)$, 2×2 matrices. Put $A = M_{s}(C)$ and let s be a faithful state on $M_{s}(C)$. Then there is a positive matrix D_s in A such that $s = tr(D_s \cdot)$, where tr is a normalized trace in $M_s(C)$. Let λ_1 , λ_2 be eigenvalues of D_s . Then we have that $\lambda_1 + \lambda_2 = 1$, λ_1 , $\lambda_2 > 0$. Take orthogonal unit vectors h_1 , h_2 in C^2 such that $s = \lambda_1 w_{h_2} + \lambda_2 w_{h_3}$. We shall show that Spec $$s = \{\frac{\lambda_z}{\lambda_1}, \frac{\lambda_1}{\lambda_2}\}.$$ Suppose that u is in Spec s. Then for given $\varepsilon > 0$, there exists $x \in A$ with $s(x^*x) = 1$ such that for all $y \in A \mid us(yx) - s(xy) \mid < \varepsilon s(y^*y)$. Let $\{e_u : i, j = 1, 2\}$ be matrix units of A such that $e_u^*e_u = \{h_i\}$ and $e_u^*e_u^* = \{h_j\}$. Now we substitute e_u in place of y of the above inequality. We have $|u\lambda_i - \lambda_j| \cdot |(xh_j, h_i)| < \varepsilon \lambda_i^{\frac{1}{2}}$. If u was not in $\{\frac{\lambda_j}{\lambda_i}: i, j=1, 2\}$, this inequality shows $|(xh_j, h_i)|^2 < \varepsilon^2 \lambda_i / (u\lambda_i - \lambda_j)^2$. But for arbitrary $\varepsilon > 0$, $1 = s\left(x^*x\right) = \lambda_1 \|xh_1\|^2 + \lambda_2 \|xh_2\|^2 = \sum_{i,j} \lambda_j \|(xh_j, h_i)\|^2 < \varepsilon^2 \sum_{i,j} \lambda_i \lambda_j (u\lambda_i - \lambda_j)^{-2}.$ This shows that Spec $s \subset \{\frac{\lambda_2}{\lambda_1}, \frac{\lambda_1}{\lambda_2}\}$. Conversely for $u = \frac{\lambda_1}{\lambda_j}$, it is sufficient to set $x = \lambda_j^{-\frac{1}{2}} e_{ji}$. Our considering object contains the Powers' fators. Analogously if s is a faithful state of $M_n(C)$, $n \ge 3$ and eigenvalues of s are λ_j : $j = 1, 2, \dots, n$, $\lambda_j > 0$, $\sum_{i=1}^n \lambda_j = 1$, then we have Spec $s = \{\lambda_j, \lambda_i^{-1} : i, j = 1, 2, \dots n\}$. **COROLLARY 9** Let $A = M_n(C)$ and s be a state of A. We preserve the notation in Theorem 4. Then we have the followings. - (1) t is of type \coprod_{λ} , $0 < \lambda < 1$ iff $\log u_1 / \log u_1$ is a rational number for all $u_1, u_2 \in \operatorname{Spec} s \{0\}$. - (2) t is of type \coprod , iff there are u, and u, in Spec $s = \{0\}$ such that $\log u_s / \log u$, is irrational. **PROOF** For $u_1, u_2 > 0$, suppose there are integers n and m such that $u_1^n = u_2^m$. Then $\log u_1 / \log u_1 = n/m$. Also Spec s is a finite set. Q. E. D. In general it has not been known whether finite tensor products of factors with type III. are of type III. But we have the following. **COROLLARY 10** Let M be a factor with type Π_o . Then $\overset{\sim}{\otimes} M$ cannot be of type Π_o . **PROOF** Let s be a non trivial faithful normal state of M. Then we can identify M with $\pi_s(M)$. The desired conclusion follows from Theorem 5. Q. E. D. #### References - [1] A. Connes: Une classification des facteurs de type []. Ann. Scient. Éc. Norm. Sup. 4° série, t. 6 (1973) 133-252. - [2] M. A. Guichardet: Products Tensoriels Infinis et Représentations des Relations d'Anticommutations. - Ann. Scient. Ec. Norm. Sup. 3^{e} série, t. 83 (1966) 1-52. - (3) Y. Nakagami: Infinite Tensor Products of Operators. Publ. RIMS, Kyoto Univ. 10 (1974) 111-145. - [4] G. K. Pedersen: C*-algebras and their Automorphism Groups, Academic Press, 1979. - [5] R. T. Powers: Representations of uniformly hyperfinite algebras and their assciated von Neumann rings. Ann. Math., 86 (1967) 138-171. - [6] E. Störmer: Symmetric states of infinite tensor products of C*-algebras, J. Fnal Analysis, 3 (1969) 48-68. - [7] E. Störmer: Spectra of states and asymptotically abelian C*-algebras, Comm. Math. Phys., 28 (1972) 279-294. (its correction) 38 (1974) 341-343. Dept. of Math. Chonnam National Univ.