On the Tensor Products of C^* -Algebras

By Chang-Ho Byun

In the theory of von Neumann algebras, the classification of factors is an important problem. This is to classify factors to non *-isomorphic classes and is accomplished by finding algebraic invariants.

Our study here is the classification of factors constructed from a product state of an infinite tensor product of C^* -algebras considered by E. Störmer [6], when the resulting factors are of type \blacksquare . Generally it is not known whether the tensor product of factors with type \blacksquare is of type \blacksquare . But as an application of our classification, we can prove that the tensor product of infinitely many factors with type \blacksquare is not of \blacksquare .

Also our result contains the famous uncontably many non *-isomorphic hyperfinite factors with type III introduced by R. T. Powers (5).

I. DEFINITIONS AND LEMMAS

We refer the terminology, technical term and the results with respect to C^* -algebras and von Nenmann algebras, (1,4), infinite tensor products of C^* -algebras and von Neumann algebras, (2,4).

If A is a C^* -algebra and s is a state of A, then (π_s, H_s, h_s) denotes the cyclic *-representation of A constructed by s such that $s(x) = (\pi_s(x)h_s, h_s)$ for $x \in A$ where π_s is the *-representation of A on the Hilbert space H_s and h_s is the generating unit vector in H_s .

Let A_i : $i=1,2,\cdots$ be C^* -algebras with identity and s_i be a state of A_i . Then we can define $B=\bigotimes_{i=1}^\infty *A_i$, $t=\bigotimes_{i=1}^\infty s_i$, the infinite tensor product of A_i and of s_i . B is a C^* -algebra and t is a state of B. B is to be considered as the inductive limit of the finite tensor product $\bigotimes_{i=1}^{n-*} A_i$, $n=1,2,\cdots$, where the norm is the smallest C^* -crossnorm.

Let H_i , $i=1,2,\cdots$ be Hilbert spaces and h_i be an unit vector in H_i , and M_i be a von Neumann algebra acting on H_i . $\bigotimes_{i=1}^{\infty} H_i$ denotes the incomplete infinite

tensor product Hilbert space with reference vectors (h_i) and $\bigotimes_{i=1}^{\infty} M_i$ denotes the von Neumann algebra acting on $\bigotimes_{i=1}^{\infty} {}^{h_i} H_i$ which is an infinite tensor product of M_i , $i=1,2,\cdots$.

It is well-known that H_t is isometrically isomorphic to $\bigotimes_{i=1}^{\infty} (ht) H_{s_i}$ and $\pi_i(B)''$ is spatially *-isomorphic to $\bigotimes_{i=1}^{\infty} \pi_{s_i}(A_i)''$. Moreover if $\pi_{s_i}(A_i)''$: $i=1,2,\cdots$ are fators, then $\pi_i(B)''$ is a factor. cf. [2].

If A is a C^* -algebra and s is a state of A, then we call s a factor state if $\pi_s(A)''$ is a factor. When s is a factor state of A, s is said to be of type X if $\pi_s(A)''$ is of type $X \times I_n$, $n=1,2,\cdots$, Π_1 , Π_∞ , Π_A , $0 \le \lambda \le 1$.

If A is a C^* -algebra and G is a group, we say A is asymptotically abelian with respect to G if there exists a representation $g \longrightarrow \alpha_s$ of G as *-automorphisms of A and a sequence $(g_n : n=1, 2, \cdots)$ in G such that for $x, y \in A$

$$\parallel \boldsymbol{\alpha}_{s_n}(\boldsymbol{x}) \boldsymbol{y} - \boldsymbol{y} \boldsymbol{\alpha}_{s_n}(\boldsymbol{x}) \parallel \longrightarrow 0$$
 when n tends to ∞ .

Let G be a group of finite permutations of positive integer $i, e, g \in G$ is an one-to-one map of positive integers onto itself which leaves all but a finite number of integers fixed. Then if $A_t = A$ is a C^* -algebra with an identity $i = 1, 2, \cdots$, and $B = \bigotimes_{i=1}^{\infty} {}^*A_i$, G acts on B by $\alpha_s(\Sigma \boxtimes x_i) = \Sigma \boxtimes x_{s(i)}$ $g \in G$, and B is asymptotically abelian with respect to G. And also $t = \bigotimes s$ is a G-invariant strongly clustering state of B, where $s_i = s$ is a state of A, $i = 1, 2, \cdots$ cf. [6].

If s is a state of a C^* -algebra A with an identity, E. Störmer introduced the spectrum of s, denoted by Spec s, is the set of non-negative real numbers u such that, for a given $\varepsilon > 0$, there exists an $x \in \pi_s(A)$ for which $||xh_s|| = 1$ and

$$||u(yxh_s,h_s)-(xyh_s,h_s)||<\varepsilon||yh_s||$$

for all $y \in \pi_s(A)$.

We denote the support of a state s of A by $E_s = [\pi_s(A)'h_s]$, where [K] is the projection onto the closed linear span generated by K in H_s . h_s is then a cyclic and separating vector for the reduction $\pi_s(A)''\varepsilon_s$.

Let \mathcal{I}_s be the modular operator for h_s relative to $\pi_s(A)''_{E_s}$. We define \mathcal{I}_s as an (unbounded) operator on H_s such that

$$\Delta_s = \begin{cases} \overline{\Delta}_s & \text{on } E_s H_s \\ 0 & \text{on } (1 - E_s) H_s. \end{cases}$$

LEMMA 1 ((7), Theorem 2.3, Corollary 2.4) Let A be a C^* -algebra with

an identity and s be a state of A. Then

Spec $s = Sp \ \varDelta_s$, where $Sp \ \varDelta_s$ is the spectrum of \varDelta_s in the usual sense. also we have that

- (1) Spec $s = \{1\}$ iff s is a trace of A.
- (2) Spec $s = \{0, 1\}$ iff the vector state $\mathbf{w}_{h_s} = (\cdot \mathbf{h}_s, \mathbf{h}_s)$ is \mathbf{a} trace on $\pi_s(A)'$ but s is not a trace of A.

If M is a von Neumann algebra, we define $S'(M) = \bigcap Sp\mathcal{A}_w$ where w runs through the set of all normal states of M. Then we have the following result in (7) Theorem 3.1, Corollary 4.2.

LEMMA 2 Let A be a C^* -algebra which is asymptotically abelian with respect to a group G and s be a G-invariant strongly clustering state of A. Then

- (1) Spec $s-\{0\}$ is a closed subgroup of the multiplicative group of positive real numbers R_+^\star , and
- (2) $S'(\pi_s(A)'') = \operatorname{Spec} s$.

If M is a factor, A. Connes has defined the algebraic invariant $S(M) = \bigcap Sp$ Δ_w where w runs through the set of all normal faithful states of M. cf [1].

LEMMA 3 ([1] P. 188) Let M be a factor and E be a non zero projection of M. Then $S(M) = S(M_E)$.

2. MAIN THEOREM

E. Störmer considered the product state of an infinite tensor product of a C^* -algebra as its copy. He obtained the following result in [6]:

THEOREM 4 Let $A_t = A$ be a C^* -algebra with an identity and $B = \bigotimes_{i=1}^{\infty} {}^*A_i$. Let s be a factor state of A. Then $t = \bigotimes s$ is a factor state of B. Moreover the followings are true.

- (1) t is of type I_t iff s is a homomorphism of A.
- (2) t is of type I_{∞} iff s is a pure state of A but is not a homomorphism.
- (3) t is of type Π_1 iff s is a trace of A but is not a homomorphism.
- (4) t is of type \prod_{∞} iff w_{n_s} is a trace of $\pi_s(A)'$ but s is neither a pure state nor a trace of A.
- (5) t is of type \coprod iff w_{n_8} is not a trace of $\pi_s(A)'$.

We can classify the case (5) of Theorem 4 more refinely using the Connes' invariant S, cf. (1).

THEOREM 5 Let A, s, B, t be as same as in Theorem 4. We suppose the case (5) of Theorem 4 occurs. Then we have

(1) t is of type \coprod_{λ} : $0 < \lambda < 1$ iff Spec $s - \{0\}$ is a subset of a non trivial closed subgroup of the multiplicative group R_+^* . In this case

$$\log \lambda = \max \{ \log \frac{u_1}{u_2} : u_1 < u_2, u_1, u_2 \in \text{Spec } s - \{0\} \}.$$

(2) t is of type Π , in all other cases.

The proof of Theorem 5 is based on the following lemmas.

LEMMA 6 Let A, s, B, t be as above. Then we have $S'(\pi_{t}(B)'') = S(\pi_{t}(B)'')$

PROOF By the definition, it is clear that $S'(\pi_t(B)'') \subset S(\pi_t(B)'')$. If w_{h_s} is faithful on $\pi_s(A)''$, then $w_{h_t} = \bigotimes w_{h_s}$ is faithful on $\pi_t(B)''$. cf [2]. And so $Sp\Delta_t = Spec \ t = S'(\pi_t(B)'') \subset S(\pi_t(B)'') \subset Sp\Delta_t$, because of Lemma 2 and $\Delta_t = \overline{\Delta}_t$ in this case. Suppose w_{h_s} is not faithful. Then

 $S'\left(\pi_{\iota}\left(B\right)''\right)=Sp\,\varDelta_{\iota}=\left\{0\right\}\cup Sp\,\overline{\varDelta}_{\iota}=\left\{0\right\}\cup S'\left(\pi_{\iota}\left(B\right)''_{E_{t}}\right)=\left\{0\right\}\cup S\left(\pi_{\iota}\left(B\right)''\right)\right\}$ because of faithfullness of $w_{h_{\iota}}$ on $\pi_{\iota}\left(B\right)''_{E_{t}}$ and $E_{t}\in\pi_{\iota}\left(B\right)''$. Hence we can use Lemma 3 and the faithful case. $Q.\ E.\ D.$

LEMMA 7 Let A_i : $i=1,2,\cdots$ be C^* -algebras with an identity 1_i and s_i be a state of A_i . Put $B = \bigotimes_{i=1}^{\infty} *A_i$ and $t = \bigotimes s_i$. Then we have $\bigcup_{i=1}^{\infty} \operatorname{Spec} s_i \subset \operatorname{Spec} t$ and $(\bigcup_{i=1}^{\infty} \operatorname{Spec} s_i - \{0\}) \cap \subset (\operatorname{Spec} t - \{0\})$ where P denotes the annihilator of P in the dual of R^* .

PROOF We can identify h_i with $\bigotimes h_{s_i}$, and $\pi_i(B)$ " is identified with $\bigotimes_{i=1}^\infty \pi_{s_i}(A_i)$ " as in 1. For fixed i, let u be in Spec s_i . Then for given $\varepsilon > 0$ there exists an $x_i \in \pi_{s_i}(A_i)$ " with $||x_i h_{s_i}|| = 1$ such that, for all $y \in \pi_{s_i}(A_i)$,

$$(\clubsuit) \mid uw_{h_{s_i}}(yx_i) - w_{h_{s_i}}(x_iy) \mid < \varepsilon \parallel yh_{s_i} \parallel.$$

 $\text{Put } \ \bar{\boldsymbol{x}}_i = \boldsymbol{1}_i \otimes \cdots \otimes \boldsymbol{1}_{i-1} \otimes \boldsymbol{x}_i \otimes \boldsymbol{1}_{i+1} \otimes \cdots \in \boldsymbol{\pi}_i \ (B) \ ''. \ \text{Then } \ \| \ \bar{\boldsymbol{x}}_i \ \boldsymbol{h}_i \ \| \ = \ 1 \ .$

For $z \in B$ and for an arbitrary $\delta > 0$, there exists $z' \in A_i \otimes 1$ for a certain integer m, where \odot denotes the algebraic tensor product, such that $\|z-z'\| < \delta$. Then we have

$$| uw_{n}(y\bar{x}_{i}) - w_{n}(\bar{x}_{i}y) | \leq u | w_{n}((y-y')\bar{x}_{i}) | + | uw_{n}(y'\bar{x}_{i}) - w_{n}(\bar{x}_{i}y') | + | w_{n}(\bar{x}_{i}(y'-y)) | \leq (u | x_{i} | + 1) \delta + | uw_{n}(y'\bar{x}_{i}) - w_{n}(\bar{x}_{i}y') |$$

where $y = \pi_t(z)$ and $y' = \pi_t(z')$. We can set $y' = \sum_{p=1}^{n} (\bigotimes_{q=1}^{n} y_{pq}) \otimes 1_{n+1} \otimes \cdots$ in $\bigoplus_{q=1}^{n} \pi_{s_q}(A_q)$ $\otimes 1$. Then, we have

$$uw_{nl}(y'\bar{x}_{i})-w_{nl}(\bar{x}_{i}y')$$

$$= u \sum_{p} \prod_{q \neq i} (y_{pq} h_{s_q}, h_{s_q}) w_{h_{s_i}} (y_{p_i} x_i) - \sum_{p} \prod_{q \neq i} (y_{pq} h_{s_q}, h_{s_q}) w_{h_{s_i}} (x_i y_{p_i})$$

$$= u w_{hsi} \left(\left(\sum_{p} \prod_{q \neq i} (y_{pq} h_{sq}, h_{sq}) y_{p_i} \right) x_i \right) - w_{hsi} \left(x_i \left(\sum_{p} \prod_{q \neq i} (y_{pq} h_{sq}, h_{sq}) y_{p_i} \right) \right).$$
By (*)
$$\left| u w_{h_t} \left(y' \bar{x}_i \right) - w_{h_t} \left(\bar{x}_i y' \right) \right|^2 \leq \varepsilon^2 \| \sum_{p} \prod_{q \neq i} (y_{pq} h_{s_q}, h_{s_q}) y_{p_i} h_{s_i} \|^2$$

$$= \varepsilon^2 \sum_{p \neq i} \prod_{q \neq i} (y_{pq} h_{s_q}, h_{s_q}) \left(h_{s_q}, y_{rq} h_{s_q} \right) \left(y_{p_i} h_{s_i}, y_{r_i} h_{s_i} \right)$$

$$= \varepsilon^2 \sum_{p \neq i} \left(\left(\bigotimes_{q \neq i} y_{pq} h_{s_q} \right) \otimes \left(\bigotimes_{q \neq i} h_{s_q} \right) \otimes y_{p_i} h_{s_i} \right) \left(\bigotimes_{q \neq i} h_{sq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \right)$$

$$\leq \varepsilon^2 \| \sum_{p} \left(\bigcap_{q \neq i} y_{pq} h_{s_q} \right) \otimes \left(\bigotimes_{q \neq i} h_{s_q} \right) \otimes y_{p_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes \left(\bigotimes_{q \neq i} y_{rq} h_{s_q} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} h_{s_i} \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} \| \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} \| \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} \| \| \| \sum_{r} \left(\bigotimes_{q \neq i} h^{rq} \right) \otimes y_{r_i} \| \| \| \| \sum_{r} \left(\bigotimes_{q \neq i} h$$

Since δ is arbitrary, we obtain $u \in \text{Spec } t$.

Let v be in $(\bigcup_{p} \operatorname{Spec} s_{p} - \{0\})^{\perp}$. Since $\operatorname{Spec} s_{p} - \{0\} = \operatorname{Sp} \overline{\mathcal{A}}_{s_{p}}$, we have $\overline{\mathcal{A}}_{s_{p}}^{vv} = E_{s_{p}}$. Also we know the equality $\overline{\mathcal{A}}_{t} = \bigotimes_{p=1}^{\infty} \overline{\mathcal{A}}_{s_{p}}$, cf [3]. But $E_{t} = \bigotimes_{p=1}^{\infty} E_{s_{p}}$, hence $\overline{\mathcal{A}}_{t}^{vv} = \bigotimes \overline{\mathcal{A}}_{s_{p}}^{vv} = \bigotimes \overline{\mathcal{A$

PROOF of Theorem 5. By Lemma 2 and Lemma 7, Spec $t-\{0\}$ is the closed subgroup generated by Spec $s-\{0\}$ in R^* . By lemma 2 and 6, we have $S(\pi_t(B)''-\{0\}=\operatorname{Spec}\ t-\{0\})$. Then the condition: $S(\pi_t(B)'')-\{0,1\}$, i.e. t is of type \mathbb{H}_o , cannot occur. If this condition occurs, it is equivalent to Spec $s=\{1\}$ or $\{0,1\}$. By the way this is equivalent that t is of type \mathbb{H}_o or of type \mathbb{H}_o by Lemma 1 and Theorem 4. This contradiction shows that t cannot be of type \mathbb{H}_o . If t is of type \mathbb{H}_o , then the above consideration shows that Spec $s-\{0\}$ is a subset of $\{\lambda^n: n=0,\pm 1,\pm 2,\cdots \}$ and that $\log \lambda = \max \{\log \frac{u_1}{u_2}: u_2 > u_1, u_1, u_2 \in \operatorname{Spec}\ s-\{0\}\}$.

The converse is obviously true. Other cases are those for t to be of type Π ,. Q. E. D.

3. EXAMPLES AND APPLICATIONS

Example 8 R. T. Powers [5] has introduced uncountably many non *-isomorphic hyperfinite factors with type \blacksquare , so called Powers' factors R_{λ} : $0 < \lambda < 1$. R_{λ} is constructed by the infinite tensor product $\otimes s$ where s is the faithful state of $M_{\lambda}(C)$, 2×2 matrices.

Put $A = M_{s}(C)$ and let s be a faithful state on $M_{s}(C)$. Then there is a positive

matrix D_s in A such that $s = tr(D_s \cdot)$, where tr is a normalized trace in $M_s(C)$. Let λ_1 , λ_2 be eigenvalues of D_s . Then we have that $\lambda_1 + \lambda_2 = 1$, λ_1 , $\lambda_2 > 0$. Take orthogonal unit vectors h_1 , h_2 in C^2 such that $s = \lambda_1 w_{h_2} + \lambda_2 w_{h_3}$.

We shall show that

Spec
$$s = \{\frac{\lambda_z}{\lambda_1}, \frac{\lambda_1}{\lambda_2}\}.$$

Suppose that u is in Spec s. Then for given $\varepsilon > 0$, there exists $x \in A$ with $s(x^*x) = 1$ such that for all $y \in A \mid us(yx) - s(xy) \mid < \varepsilon s(y^*y)$. Let $\{e_u : i, j = 1, 2\}$ be matrix units of A such that $e_u^*e_u = \{h_i\}$ and $e_u^*e_u^* = \{h_j\}$. Now we substitute e_u in place of y of the above inequality. We have $|u\lambda_i - \lambda_j| \cdot |(xh_j, h_i)| < \varepsilon \lambda_i^{\frac{1}{2}}$.

If u was not in $\{\frac{\lambda_j}{\lambda_i}: i, j=1, 2\}$, this inequality shows $|(xh_j, h_i)|^2 < \varepsilon^2 \lambda_i / (u\lambda_i - \lambda_j)^2$. But for arbitrary $\varepsilon > 0$,

 $1 = s\left(x^*x\right) = \lambda_1 \|xh_1\|^2 + \lambda_2 \|xh_2\|^2 = \sum_{i,j} \lambda_j \|(xh_j, h_i)\|^2 < \varepsilon^2 \sum_{i,j} \lambda_i \lambda_j (u\lambda_i - \lambda_j)^{-2}.$ This shows that Spec $s \subset \{\frac{\lambda_2}{\lambda_1}, \frac{\lambda_1}{\lambda_2}\}$. Conversely for $u = \frac{\lambda_1}{\lambda_j}$, it is sufficient to set $x = \lambda_j^{-\frac{1}{2}} e_{ji}$. Our considering object contains the Powers' fators.

Analogously if s is a faithful state of $M_n(C)$, $n \ge 3$ and eigenvalues of s are λ_j : $j = 1, 2, \dots, n$, $\lambda_j > 0$, $\sum_{i=1}^n \lambda_j = 1$, then we have Spec $s = \{\lambda_j, \lambda_i^{-1} : i, j = 1, 2, \dots n\}$.

COROLLARY 9 Let $A = M_n(C)$ and s be a state of A. We preserve the notation in Theorem 4. Then we have the followings.

- (1) t is of type \coprod_{λ} , $0 < \lambda < 1$ iff $\log u_1 / \log u_1$ is a rational number for all $u_1, u_2 \in \operatorname{Spec} s \{0\}$.
- (2) t is of type \coprod , iff there are u, and u, in Spec $s = \{0\}$ such that $\log u_s / \log u$, is irrational.

PROOF For $u_1, u_2 > 0$, suppose there are integers n and m such that $u_1^n = u_2^m$. Then $\log u_1 / \log u_1 = n/m$. Also Spec s is a finite set.

Q. E. D.

In general it has not been known whether finite tensor products of factors with type III. are of type III. But we have the following.

COROLLARY 10 Let M be a factor with type Π_o . Then $\overset{\sim}{\otimes} M$ cannot be of type Π_o .

PROOF Let s be a non trivial faithful normal state of M. Then we can identify M with $\pi_s(M)$. The desired conclusion follows from Theorem 5. Q. E. D.

References

- [1] A. Connes: Une classification des facteurs de type []. Ann. Scient. Éc. Norm. Sup. 4° série, t. 6 (1973) 133-252.
- [2] M. A. Guichardet: Products Tensoriels Infinis et Représentations des Relations d'Anticommutations.
 - Ann. Scient. Ec. Norm. Sup. 3^{e} série, t. 83 (1966) 1-52.
- (3) Y. Nakagami: Infinite Tensor Products of Operators. Publ. RIMS, Kyoto Univ. 10 (1974) 111-145.
- [4] G. K. Pedersen: C*-algebras and their Automorphism Groups, Academic Press, 1979.
- [5] R. T. Powers: Representations of uniformly hyperfinite algebras and their assciated von Neumann rings. Ann. Math., 86 (1967) 138-171.
- [6] E. Störmer: Symmetric states of infinite tensor products of C*-algebras,
 J. Fnal Analysis, 3 (1969) 48-68.
- [7] E. Störmer: Spectra of states and asymptotically abelian C*-algebras, Comm. Math. Phys., 28 (1972) 279-294. (its correction) 38 (1974) 341-343.

Dept. of Math. Chonnam National Univ.