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Hypersurfaces with normal (f, g, u, v, w, A, 1 v)-Structure
ofa Product of Two Spheres with Same Dimension

By U-Hang Ki & Soon-Ja Kim

§ 0. Introduction

Recently, K. Yano ( (6)) introduced the so-called (f, g, u, ¥, A) — structure on
a product of two spheres S"(1/v2)XS"(1/v2) as a submanifold of codimension 2
of a (2n+2)— Euclidean space.

Using this structure, S.-S. Eum, Y. H. Kim and one of the present authors
( (2)) investigated real hypersurfaces of S®(1/v2)XS"(1/¥/2), and deduced
the (f, & % v, w, A, 4 v) - structure (See §1) from the (f, g u, ¥, A) - struct-
ure defined on the ambient manifold.

In the present paper, we define the normality of the (f, & u, v, w, A, 14 v) —

structure and prove some characterizations of the hypersurface of S"(1/42)xXS"

(1/VZ).

§ 1. Hypersurfaces of S"(1/v2)XS8"(1/v2)

Let E*"'be an (n+1) — Euclidean space and O the origin of the Cartesian coordi-
nate system in E™'' and denote by X the position vector of a point in E™' with
respect to the origin.

We consider a sphere S™(1/42) with center at O and radius 1/v2 and suppose
that S™(1/42) is covered by a system of coordinate neighborhoods {U: x°{, where
here and in the sequel the indices a, 8, ¥ and & run over the range {1,2, -+, ni.

We next suppose that S™(1/v2) is also covered by a system of coordinate nei-
ghborhoods 1V: y*! and denote by Y the position vector as above. Here and in the
sequel the indices k, 4, v and v running over the range {in—+1, n+2, -, 2ni.

Now we put
(1. 1) Xoa= GaX, Yr=0xY,
where 9,= 9/ 9x%, O,= 9/ dy*, the position vector X and Y a point on S"(1/¥2)
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2 U-Hang Ki & Soon-Ja Kim

satisfies respectively

(1.2)  X-Xx=1, Y v=14,

the dot means the inner product of two vectors in a Euclidean space.¥ i
Giving the differential structure to $™(1/v2)X 8" (1/y/2) naturally kg prod-

uct manifold which is covered by a system of coordinate neighborhoods ..:' X V:(x%

¥y*)t, S"(1/v2) X 8"(1/v/2) as a submanifold of codimension 2 in a (27+2)

~dimensional Euclidean space has a position vector Z of a point in S®(1/v2) XS"

(1/42) such that

, my o (X (x%)
(1.3) Z (x") (Y(y")),

where here and in the sequel, the indices h, I, j and k run over the range
i1, 2, =+, m, n+1, -, 2ntl.
‘ Thus, using (1.2) we see that Z-Z=1, which shows that S™(1/v/2)xS"
(1/v/2) is hypersurface of S°"*'(1) in E?**%, v
Putting Z,= 9,Z, 9,= 8/0x' we see that Z, are 2 n linearly independent vectors
tangent to 8™ (1/4/2)X8"(1/¥2) and the induced Riemannian metric on S™(1/v2)
XS (1/v2) is given by

(1. 4) 8:=Z, Z.

Now putting

— X (2) — X (x7)
(1.5) C= ( k) D= ( .
—Y{y*)), Y (y%)),
then we easily see that
(1.6) Z,-C=0, Z;+D=0, C-D=0, C-C=1, D D=
and consequently C and D also mutually orthogonal unit normal to 5" (1/v2)xS"

(1/v2).

Let h,; and k;, be the second fundamental tensor with respect to C and D res-

pectively. Then we have (See (6 ])
(1.7) ho=g. k.8"'=0, klh'=2d}

where k= k8" (8" '=(g,:). So that the tensor k} defines an almost product
structure of S™(1/+2)XS™(1/+v2).

Denoting by V, the covariant differentiation with respect to g, we find ((6])

(1.8) V,k;"xo
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and
(1.9) V,Z,=8:,C+K,.D, V,C=—2, V,D=—Fk})Z,,
which mean equations of the Gauss and Weingarten of S"(1/v2)XS8™*(1/v2) re-
spectively.
From (1.9) we can easily derive
(1. 10) Ke)l'= 64" 8,0~ 0 8t kx" kyi— k) ko,
Kx,# being the curvature tensor of S™(1/v2)X 8"(1/+/2).
Since E*™*?* has a natural Kaehlerian structure F, the transform Z,, C and D
by F are respectively given by
(1.11) FZ,= f*Zy+u,C+v,D, FC=—u"Z,+AD, FD=—v"Z,—AC,

where f is a tensor field of type (1,1), % and v, 1-forms and A the function
on S™(1/¥2)X 8" (1/4/2), ur and v* are respectively given by u"=u,g""
=y, g"

Applying F to (1. 11) respectively, we obtain the so-called (f, & u, v, A)~
structure given by (See (6] and (81])

frifl=—8r+uur+v,v",
ufi=Av, flu'=—2av"
(1.12) wfl=—Au, [fivi=t,

wut=vv'=1-A% wuv'=0,

Lg,sfj‘f:“z i U U ViV

It is well known that the (f, & 4, ¥, A) — structuce induced on S* (1/¥2) X 8"
(1/4/2) satisfies the following relationships ({6]) :
(1. 13) P fERP=0, krut= vt kRPvts —uh

Now, differentiating (1. 11) covariantly and taking account of (1.9), FF=0
and original equations, we find ([6]})
_— { P, fr=— g+ 8 u— kv + kv,

Vow=fi— Ak, Vvi=—k fitAgu V,A=—2v,.

Let M be a hypersurface immersed isometrically in S”(1/4/2)XS"(1/v2) by
the immersion i: M— S™(1/v/2 )X 8"(1/v/2) and suppose that M is covered by a
system of coordinate neighborhoods {W: n%}. Throughout this paper the indices a

b, ¢, d, - run over the range {1,2, -+, 2n—1%.
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Letting B*=08.2" (8.=3/97°) then B, are 2n—1 linearly independent vec-
tors of 8™(1/¥2)X 8" (1/4/2) tangent to M.

We denote by N” the unit normal to M, then the fundamental metric tensor g,
of M is given by

8B By = Bco
since the immersion is isometric.

As to transform of B/ and N’ by f we can respectively write down
(1. 15) SIBi=fBs*+ w N, fPN=—w*B/,
where f.* is the components of a tensor field f of type (1.1), w. components of
1-form and w®= w.8*, g being the contravariant components of &cs.

Also, we may put in each coordinate neighborhood as follows :

(1. 16) u"= u’BS + uN*, v"=v*BS)+ vN",

(1. 17) k!Bl = k’Bg" + k.N*,  k/'N'= k°B;*+ N",

where k. is the components of a tensor field £ of type (1,1), u% v* and k°
the components of a vector field respectively, u, v and 8 are certain functions on
M, k. being the associated 1-form with the vector k¢,

Applying fi* to (1. 15) and (1. 16) respectively, and making use of (1.11) and
these equations, we find the so-called (f, & u, ¥, W, A, g v)-structure as follows
(€21, (33, (7)) :

(1.18) ([ fEf= — 8,4 ucu+ vevitweow?,
Jflul=—Ave+ pw®, Uef= AV uwe,
(1.19) ﬁ Sfve=Au+vw?, Ve fef =~ AU vlW,,

L féwe=—pu—vv®,  wef= puc+vv.,
((UeuT=1-—A"— M, UeV®=—pv, U W= — Ay,

(1.20) ¢ vev*=1—X"—v? vew®=Au,

{ Wew=1—pu?'— v,
(1.21) SE S Bea= Beo— UclUs— VeVo— WcWo,y
where 4. and v. are 1-forms associated with u® and %° respectively. The last
expression follows from (1.12), (1.15) and (1.16).

If we apply k* to (1.17) and taking account of (1.7) and original equations,

we obtain
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(1. 22) kfke= 86— ko k°,
(1.23) keek®=—60ke, kek®=1-6".

Transforming (1. 17) by f and remembering (1. 13), (1.15) and (1.17), we
get
(1.24) kffl+ ff kL= kew®— w. k°,
(1.25) keeW®+ fee k® = — Bwe..

If we transvect (1.17) with ¥* and v* successively and take account of (1.13)
(1. 16)and (1.17) itself, then we have respectively
(1. 26) keeu®=—ve—pthe, KeeV®= —uc— vk,
(1.27) keu*= — (v+0u), keve=— (u+6uv).

Putting feo= fc“8ab» Kkeo= kc8as, we can easily verify that f, is skewsymmet-
ric and k¢, is symmetric.

We denote V. by the operator of the van der Waerden- Bortolotti covariant

differentiation, we can write down the equations of Gauss and Weingarten

respectively
(]. 28) V(:Bbh: leNhy Vcth - lcaBauy

where [.2= [.,,&", l.», being the components of the second fundamental form [
with respect to the unit normal N”,

Thus, the equations of Gauss and Codazzi are respectively given by
(1. 29) kdconz Ba“gca~ ﬁc“gao‘i’ kdakcb'“ kcckdb + ldalcb" lcaldbv
(1. 30) Veleo— Velay= kakco— ke Ka

because of (1.10) and (1.28), where Ku® being the components
of curvature tensor of M.

Differentiating (1. 15)~ (1. 17) covariantly along M and taking account of (1.8),
(1. 14), (1.28) and original equations, we have respectively ([(2))

(1. 3].) V(’?fba::: ”’gcbua’*' b‘caub"— k{:&vd__{_ kcavgw l()bwa+ lcawb,

(1. 32) Vetts= — Akoo+ ptdcot feo,

(1. 33) Vevo=— kcefo*— keWs+ vice+ ABcos

(1.34) V. we= — ugeco— vkeot keVo— lcefsl,

(1.35) Ved= =2, V.u=w.— Ak~ lcet®, Vev=rFKeew®— lcev®,

(1. 36) Ve k== Len K+ Lk,
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(1. 37) Veko=— Kpe I°+ 0lcb,
(1. 38) Vo= —2 1. k°.

Now, we introduce the following theorems for later use.

Theorem A ((2)). Let M be a hypersurface of S*(1/v/2) XS8"(1/v/2) (n>
1) with (f, 8 w, v, w, A, i, V) - structure satisfying \*+p*+ =1, then we have
©=0. Moreover, if v’=1, then (f’°, gcv, k.) defines a Sasakian struciure and

M is a minimal C- Einstein manifold.

Theorem B ((2]). Under the same assumptions as those stated in Theorem A,

M as a submanifold of codimension 3 of a (2n+2) - Euclidean space is an inter-

section a complex cone with generator C and (2n-+1) — unit sphere.
Finally we prepare a useful lemma.

Lemma 1.3 Let M be a hypersurface of S"(1/V2) XS"(1/¥'2) (n>1).Then

the 1-form u. is nonzero on an open set in M, and if the function A=0 on an

open of M, then v*=1, u=0 and 8§=0 on the sel.

Proof. Suppose that the 1-form u.= 0 on an open set M, in M. Then the fi-
rst equation (1.20)and (1.32) becomes respectively

(1. 39) 1—-u?—A'=0,
(1. 40) —Akcb+#lcb‘+fcb:0

on M,. If we take the skew- symmetric part of (1.40), we obtain feo= 0 on M,
because k¢, and l., are symmetric and fc, is skew-symmetric. Thus we see from
(1. 18) that

— 0+ v vt wewt=0
on M,. Contracting this a and ¢ and taking account of (1.20) and (1.39), we
find {n—1)+v*= 0 on M, and hence n<_1. It contradicts the fact that n>1.
So that u.# 0 on M,.

In the next plase, if the function A vanishes on an open set M, of M, then
the first equation of (1.35) is turned out to be v.= (0 on M, and consequently
v*=1 because of the fact that 0= 1, v*=1—A"— )%

So the last equation of (1.20) implies =0 on M.

Consequently we have fv=0 on M, because of the second equation of (1.27) and
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hence 8= 0 since v’= 1, Thus the proof of this lemma is completed.

§ 2. Normal (f, & u, v, w, A, i, v) — structure on the hypersurface.
We now define a tensor field § of type (1, 2) on the hypersurface M of S™(1/
V2)XS8*(1//2) as follows :
See?=f° Vefo?— fof Vefca“"‘ ( chbe" bece) S+ ( Veur— Votte) 1°
+ (Fve— Vove) v+ (Fewy— Vowe) we.

When S vanishes identically, the (f, & %, v, w, A, &4 v) ~ structure is said to be
normal ((7)).

We suppose, in the sequel, that the induced structure on M is normal. Then,

by substituting (1.24) and (1.31)~ (1.34) into the last equation, we find
(2 1) Racwb"‘ Rabwc= (kaefbe+ kbefae) Ve (kaefce+ kcefae) Vo
+ (kbefce"‘ kcefbe) va+ (kbvc"— kcvb) Wa,

where we have put
(2 2) Rey= lcefbe+lbefce,

Contracting @ and b in (2. 1), we obtain

(2. 3) Rcewe= (T+2 A) Vc+ Aﬂkc“Z Vk»cewe,
where we have used (1.19), (1.20), (1.26) and put
(2.4) 7= Kk w°*.

If we transvect (2.1) with w? and make use of (1.19), (1.20) and (2. 3),
we get
(1 =4~ v*) Rac+ At (Koo S+ ke o) — Kne w® (fa' Vet fcva)
(2.5) =7 (VaWe+ Ve Wa) +2 AVaWet At (KeWe— ke Wa) —2 v (Koo w®) We
+ v (UaVe— UeVa) + (12 +V?) (KaVe— kcVa),
from which, taking the skew-symmetric part with respect to indices a and c,
V (Kaew®) we—v (Kcew®) Wa= A (VaWe— vewa) + Apt (KaWe— kcwa)

+ v (UgVe— UcVa) + (L2 +v*) (kave— keva).

(2.6)

On the other hand, transvecting (1.24) with w® and remembering (1.19), (1.
20) and (1.27), we get

(2.7) koyww®=—0—2uv.
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Transvecting (2.6) with w* and using (1.20), (2.4} and (2.7), we have
{ v (1= = v*) keaw®= Auvtie+ Ahe+1A (1 —42) — 7 (4 + v*) I ve
2-8) —1 6y +2 i+ At At we.
If we transvect u° to (2. 8) and make use of (1.20). (1.26) and (2.4), then

we obtain
(2.9) pvr (1422 = A (6+ uv) (i~ v?).

Applying also v¢ and £° to (2.8) successively, we get respectively
(2. 10) T (AW —12) = A (— 14+ A2 2842 02 +2 Guy — v+ 12 v?).
(2.11) pr (v — 2 Ar) = A (1 — Oy — > — 120%)
where we have used (1.20), (1.23) and (1.27).

First of all we prove

Lemma 2. 1. Let M be a hypersurface with normal (f, g, uw, v, w, A, &, v) — str-
ucture of S"(1/V2)X S8"(1/V2) (n>1). Then the function u vanishes identic-
ally if and only if the function 6 so does.

Proof. In the first place we suppose that the function g vanishes identically, t-
hen (2. 11) is turned out to be Afv =0, which together with (2. 10) gives
A6 (1—A*)=0.

But, A(1—A*) does not vanish because of Lemma 1.3. Thus it follows that
=0 on M.

Conversely if the function # vanishes on M, then the equations (2.9)~ (2.11)

reduce to
(2. 12) avr (14+A%) = Auy (i — v*),
(2.13) (A=) = A (= 1+ X424 +2 v — v + ),
(2. 14) ut (A v — i+ Ar) = A (@2 — ).
We also have from (1. 38)
(2. 15) leck®=0.
On the other hand, we have
(2. 16) (ke wdfovs) bk = — u (kgew®) (kW)= —p(1—pg—v'—1")

with the aid of (1.22), (1.25), (1.27), (2.4), (2.7) and the fact that 8=20.
If we transvect (2.5) with k%k° and make use of (1.23), (1.27), (2.2), (2.
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4), (2.15) and (2.16), we find
(2.17) p(l—@Z—v'+2a7)=0,
where we have used the fact that =20,
Combining (2. 12) ~(2. 14) and (2.17) and taking account of Lemma 1.3, we
can easily prove that u vanishes on M. This completes the proof of the lemma.
Now, we suppose that the hypersurface M with normal (f, &, u, v, w, &, 1 v) -

structure has the following condition :
(2. 18) kELOH L ERS= 0.

Then, by transvecting £%k° and using the first equatioh of (1.23), we obtain
0lc, k°k®=0, which together with (1.38) gives

(2.19) lenk°k*=0.
Transforming (2. 18) by ks and remembering (1.22), we get
Lav= (lpek®) kat 1k kpe= 0,
from which, taking the skew- symmetric part with respect to indices d and b,
(Loek®) ka— (laek®) kr=10.
If we transvect this with k% and take account of (1.23) and (2.19), we get
(1—6%) loek®=0.
Hence, it follows that & is constant because of (1.38). Thus (2.15) is valid.
Now, transforming (2. 18) with k.5, we find
EClee k=0,
which together with (1.22) and (2. 19) gives
(2. 20) le=0,
which shows that M is minimal.

On the other hand, transvecting the first equation of (1.17) with B% = B/g"

&n and taking account of the second equations of (1.7) and (1.17), we find
(2.21) ke =—6.
If we transform (1.30) by g% and use {2.20) and (2.21), we obtain
(2.22) Pelee=0.
Applying 7¢ to (2. 15) and making use of (1.37) and (2.22), we get
1 (— kpelc® +8lcy) =0
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and consequently
(2. 23) 0lep =0
because Kkiel.° is skew- symmetric,
We now suppose that the hypersurface M is totally geodesic, then (1.30)
leads to
kakeo— kckay=0.
Transvecting the last equation with A%k°® and remembering (1.22) and (1.23),
we see that 1—6*=0, that is, kc=0. So (1.25) becomes
keew®=—6w..
So that (2.6) leads to
A (VaWe—Vewa) + v (UaVe— UcVa) = 0.
If we transvect v®w°® to this and make use of (1.20), we .find
A==y —v?)=0.
But, in a consequence of Lemma 1.3, the function A cannot be vanish on M.
Consequently we get
Attt vi=1.
From this fact and Theorem A in § 1, we see that u vanishes on M. So we
should have =0 because of Lemma 2. 1. This contradicts the fact that #=1.
Thus, it follows from (2.23) that the constant & vanishes on M and hence u
so does because of Lemma 2. 1. Therefore, by transvecting the second equation
of (1.35) with k° and remembering (2.4) and (2.15) gives the fact that r=A.
Using these facts obtained above, the equation (2. 10) is turned out to be
AByi= A (—14+A+200— ),
or equivalently A (1—A*){1—*)=0.
According to Lemma 1.3 and the last equation, we have v’=1 on M.

Thus, due to Theorem A and Theorem B in § 1, we have

Theorem 2.2. Let M be a hypersurface of S™(1/v2) X 8" (1/v/2) (n>1) wi-
th normal (f, g 4, v, W, A, i, v) — structure. If k-1+1 k=0 holds at every
point of M, then M is a minimal Sasekian C- Einstein space. Moreover, M as a
submanifold of codimension 3 of a (2n+2) ~ Euclidean space is an intersection of

a complex cone with generator C and (2n-+1) — unit sphere.
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Finally we prove

Theorem 2.3. Let M be a compact hypersurface of S™(1/v2) XS*(1/vV2) w-
ith normal (f, & u, v, W, A, &, v) — structure (n>1). If the function u has defin-
ite sign, then M is the same type of Theorem 2. 2.

Proof. We have from (1. 34)
Vew¢=—2nu
with the aid of (1.27) and (2.21). Since the function u has definite sign, apply
the Green theorem, we have =0 on M because the hypersurface is compact.

Therefore, the function 6 vanishes identically by virtue of Lemma 2.1. Thus,

according to Theorem 2.2, our assertion is true.
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