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REMARKS ON THE CARISTI-KIRK
FIXED POINT THEOREM

JonG Sook Bag AND SeHIE PARK*

1. Introduetion

In attempting to improve the Caristi-Kirk fixed point theorem, Kirk has raised
the question of whether f continues to have a fixed point if we replace d(z,fx) by
d(z, fxr)? where p > 1 in the following theorem (cf. [3]).

THEOREM A (Caristi-Kirk [2]). Lez (M, d) be a complete metric space, f: M— M
an arbitrary map, and ¢ : M — R* a lower semicontinuous function. If d(z, fr) <
& (x)— ¢(fx) for all x in M, then f has a fired point in M.

In this paper, we first give an example which shows that Kirk’s problem is not
affirmative even if ¢ and f are continuous.

In section 3, we consider certain circumstances where Kirk’s problem is valid,
and, consequently obtain generalizations of results of Caristi [2], Ekeland [5], and
Park [7].

Actually, Kasahara {6] and Siegel [8] obtained the following generalization of the
Caristi-Kirk theorern.

THEORM B. Let (M, d) be a complete metric space, and ¢ : M — R* a lower semicon-
tinwous function. Then the family
F={f: M- M| d(z, fr) < ¢(z) — ¢(fx) for 1€ M}
has a common fixed point.

Note that F is not empty since 1yEF. In fact, such a common fixed point in
Theorem B is a d-point in the following theorem of Ekeland [4], [5].

THEOREM C. Every lower semicontinuous function ¢ from a complete metric space (M,
d) inte R* has a d-point q in M, that is, we have

9@ — o(x) <d(g, 1)
Jfor every other point x in M.

2 An example

We give an example showing that Kirk’s problem is not affirmative when p>1
even if ¢ and f are continuous.

Let M= R and ¢ : R— R* such that

{2z+3 if z>-1
¢(z)={___:1; if r<~-1.
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Then ¢ is contmuous Define f: R— R by fr =z — ¢(z) with sufficiently small
e(x), 0<e(a) < 1 that f satisfies d(z, fx)? < ¢(z)— g@(fa:) for £ € R with the

usual metric d on R where p >1
In fact, d(z, fr)? =e(x)? and

G) if z > ~—z—, then ¢(z) — ¢(fz) = 2 (),
G if z< —-—i—, then we have

—_ _1_ 1 = :
$(z)— ¢(fz) 2 + x — e(x) z(z—e(@) "
We can choose sufficiently small e(2)> 0 so that e(z)?-1(|z|+e(2))?2 < 1, and hence
e(x)? < e(x) [x(x—e(x)), for each fixed z <—%—_ Therefore in any case, we can
choose &(x) so that f is continuous and d(z, fzr)?< ¢(z)— &(fz) holds. However f
has no fixed point.

3. Main results

It is well-known that Theorems A and C are equivalent (Brézis-Browder [1]). This
can be expressed more explicitly as follows by combining Theorems B and C:

TaeoreM 1. Let (M, d) be a metric space, ¢: M— R* an arbitrary funciion. Let F
be the family of all selfmaps of M such that for each x & M, -
) d(x, fr)?< ¢(x)— 6(fz)

where p>0. Then ¢ € M is a common fized point of F iff qsatzs_ﬁes gb(q)— o(x) <
d{(g, x)? for every other point = in M.

Proof. Sufficiency is obvious. To see the necessity, suppose there exists a ye M
with y # g such that ¢(g) — &(y) >d (g, ¥)?. Define f: M— M such that fg = y and
fr==z for x #¢. Then f€ F and ¢ is not a fixed point of f. ‘

REMARK. In Theorem 1, if M is complete and ¢ is lower semicontinuous, and if
0< p <1, then ¢ hasa point g in M satisfying ¢(g) — ¢{z) <d(q, 2)? for each other
point = in M. This extends Ekeland’s Theorem C. To prove this, consider a new
metric p on M with p(z, »)=d(z, »)/(Q+d{(z, ¥)) W]nch is equivalent to the original
metric d. .

Let M be a complete metric space and ¢ : M — R* a lower semicontinuous function.
Let D be the set of all d—points of ¢ in M. We say that ¢ has a minimal d-point ¢
in M if g€ D and ¢(g) = infpcp $(¢'). Note that if ¢ has a-finite number of d—pomts,
then a minimal d-point of ¢ always exists. .

LeEMMA 1. Let (M, d) be a complete metric space and ¢:M— Rt a lower semicon-
tinuous function. Then q is a minimal d-pojnt of ¢ in M iff inf,cpé(2) = $(g).

- Proof. If ¢(g)=inf,cprd(x), then ¢ is clearly a minimal d-point of ¢ in M.
Conversely, suppose that ¢ is a minimal d-point of ¢ in M and infoepr $(x) < @(g). Let
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r be a number such that inf,ey ¢(x)<r<g(g) and N= {r & M| gx)<r}. Since
¢ is lower semicontinuous, N is closed in M. By Theorem C, ¢ has a point ¢ in N
such that ¢(¢’) — d(z)<d(q, z) for every other point x in N. Let y& N. Then
() >r and ¢(¢") < r give ¢(g')— ¢(») < d(q,y). Hence ¢’ is another d-point in M
and ¢{(g")<¢(g), which leads a contradiction.

LEMMA 2. Every lower semicontinuous function ¢ from a compact metric space M
into R* has a minimal d-point in M.

Proof. Let infiey ¢(z)=r. Then there exists a sequence {z;} in M such that
é(xz)— r. Since M is compact, we may assume that {r;} converges to some point g
in M. Then r =lim ¢(x;) > ¢(g). Hence ¢(g)=r and by Lemma 1, ¢ is a minimal
d-point of ¢ in M.

THEOREM 2. Let (M,d) be a complete metric space and ¢ : M— R* a lower semicon-
tinuous function. Let G be the family of all selfmaps of M satisfying (3).

(1) If 0<p <1, then F has a common fixed point.

(i) If ¢ has a minimal d-point q ir M, then q is a common fized point of F.

Proof. (i) Since 0<p <1, p(z,5)=d(z,5)/Q+d(z,9))<{d(z,»/1A+d(z,)}?
< d(z,y)? for all 2,y M. Hence we have p(z, fr) < ¢(z)— ¢(fx), & M and so
we can apply Theorems 1 and C to get the desired result.

(ii) By Lemma 1, ¢(g) = inf.cy ¢(z). Then clearly ¢(g) — ¢(z) < d(g,2)? for every
other point x in M. Therefore by Theorem 1, ¢ is a common fixed point of F.

ReMARK. Note that Theorem 2 (i) also extends Theorems A and B. Since Theorems
A and C are equivalent, Theorem 2 (i) also extends Ekeland’s Theorem C.

Also note that Theorem 2 (ii) says that if M is compact or ¢ has finitely many d-
points, then F has a common fixed point by Lemmas 1 and 2.

THEOREM 3. Let (M, d) be a metric space and f a continuous selfmap of M. Let
¢ : M— R* be an arbitrary function satisfying (4).

(1) If z & M, then any cluster point of the iteration {fz}s, is a fired point of f.

(i) If M is complete and 0 <p <1, then {f*z} converges to some fized point of f
for every x M.

Proof. (i) Since {#(f"r)} is decreasing and bounded below, lim d{( "z, f**1)= 0.
Let ¢ be a cluster point of {f?z} and let {f"x} be a subsequence of {f"z} converging
to g. Since ‘

d(g, f<d(g, foz)+d(fmz, frtz)+d(f*z, fg)
and all terms of the right hand. side converge to 0, we have fg =gq.

(ii) We know that the new metric p with p(z, ¥)=d(z,5) /(Q+ d(z,y) is equival-
ent to the original metric d and p(z, fr)< é(z)— ¢(fx). Since {¢(f"z)} is decreasing
and bounded below, { f?r} is a Cauchy sequence in M for every r in M with the
metric p and hence with d. Therefore, there is a point ¢ in M such that f2z —q. Since
f is continuous, we have fg = q¢.

Note that in Theorem 3, we did not assume the lower semicontinuity of ¢.

THEOREM 4. Let X be a nonempty set. (M, d) a complete metric space, and f,g:
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X — M maps suck that
(a) f is surjective, and
(b) there exists a lower semicontinuous function ¢ : M — R* satisfying
d(fz, gz)?< ¢(fz)— é(g)
for each x €X, where p > 0.
(i) If0<p<1, then f and g have a coincidence.
i) If ¢ has a minimal d—point in M, then f and g have a coincidence.

Proof. In any case of (i) and (ii), by the same argument in the proof of Theorem
2, we have a point g in M such ¢(g) — #(3)<d(g, y)? for every other point y in M.
Let z € f~1q. Suppose fr # gx. Then we have

o (fr)— ¢(gzx) = ¢(q) — ¢(gx) < d(g, gx)? =d(fz, gz)?,

which is a contradication.

ReMARK. Theorem 4 (i) includes Proposition 7 in [7].
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