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STRICTLY CYCLIC BANACH REPRESENTATIONS NAIMARK-
RELATED TO *-REPRESENTATIONS AND THEY ARE
* REPRESENTATIONS

JAE CHUL RHO

1. Introduction.

In The first part of this note auther studied strictly cyclic Banach repre-
sentations of Banach *-algebra (or C*-algebra) Naimark-related to *-repre-
sentations which is the weaker than the similarity problem, while in the
second part the auther considered when strictly cyclic Banach representations
of a C*-algebra equal to *-representations, this is the stronger property
than the similarity. Throughout this note X will denotes a complex Banach
space, B(X) the algebra of all bounded linear operators on X. A rpresen-
tation x is always continuous and not *-preserving. A representation z : A
—B(X) is said to be essential if for any £€X the condition z(z)£=0 for
all ze A implies €=0. It is called strictly cyclic (resp. topologically cyclic)
if there is a vector & in X such that 7(A)&=X(resp. z(4)&=X). A
representation is called topologically irreducible provided that the only closed
m-invariant subspaces of X are {0} and X, and it is algebraically irreducible
if the only z-invariant subspaces of X are {0} and X.

2. Naimark-related problem for representations of a Banach
*-algebra.

DEFINITION 2.1. Let 7: A—»B(X), ¢ : A—>B(X) be Banach representa-
tions of a Banach *-algebra A. r and ¢ are said to be Naimark-related if

there exists a closed densely defined one-to-one linear operator U defined
in X with dense range in Y such that

(i) domain of U is m-invariant
(i) ¢(x)Ust=Uzr(2)& for any £&domain of U and any z€A.

THEOREM 2.2. Let A be a Banach *-algebra, let T : A—>B(X) be a strictly
cyclic Banach representation with a strictly cyclic vector &y in X. If there
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exists a state f on A with the following conditions:
(@) fa*x)V2<Klz(@)éoll (K>0) for all z€ A
and (i) {z€A:n(2)&=0}=1{z<A: f(z*z)=0}.
Then © is Naimark-related to a *-representation.
Proof. We define an inner product <, > in X=n(4)&, by
Flyrz)=<z(x)&, m(9)&> (z,yEA).

According to a property of a state f(y*z) < f(y*y) f(z*z) and the condition
(ii), it is easily shown that the inner product is well defined with the pro-
perty that

@ <z @ (x)&, T(ME>=<z(2)& 7(*)m(y)&e>

for all ‘z,y and z in A.

We denote the inner product space (z(A4)&, < >) by H, It is known
that every *-representation of a U*-algebra A on a pre-Hilbert space is
continuous and each z(z) (z€A) is also continuous on the pre-Hilbert
space. Furthermore, every complex Banach *-algebra is a U*-algebra ([8],
proposition 5, Theorem 7). Thus z(z) EB(H,;) :€A) and =z : A—B(H,)
is continuous. Let H be the completion of Hy and we define an operator
extension of z(z) (z€A4) by

@ z(2)§ =$1im$7r ()&, () cH, and € H.

Then this extension is unique with the properties that
(3) lz@=lz@ |, @) |H=x() (z€A).

And also 7 (z) is a closed operator, whence (z(2))*=x(z)*<B(H).
Since z(2)* is a closed operator whether 7 (z) is closed or not, thus z(z)*
=gx(z)*. It follows that

@ n(2122)E=7 (z9)7 (22) &,

(@) *e=n(z)*é=n () *E=x(z*)¢ ((€H).
Now, we define @ : A—>B(H) by
(5) zZ(x)=n(z) (x€4).

Then % is the continuous *-representation of A on the Hilbert space H.
D

It remains to prove that = and % are Naimark-related. We define a linear
operator U : X—H, by Ué=¢ (£=X), then the domain U is X, range of
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U is dense in H and U is one—to—one. For each £ X, there is a sequence
{¢,} in X such that U¢,=¢,—¢ for X—norm. But by (i)

<7L'(.’E,,)$o—'$, ﬂ'(xn)'so_é>=f((xn_x)* (x,,——x)) SKzllﬂ(xn)EO—EHZ-

This shows that X-norm limit can be con sidered as an H-norm limit. Thus
if &,—& and U¢,—¢& for the X-norm, then £€X(=domain of U) and U¢
=€ HyCH. Therefore U is a closed operator.

Furthermore, since

F(@)Ut=n(z)é=Uzn(z)é for any £€X (z€4),

# and 7 are Naimark-related. We have proved the Theorem.

In special case, if the equality f(z*z) 2=||z(z)&|| (x=A) holds in con-
dition (i) of the Theorem 2.2, we have a following stronger result.

PROPOSITION 2.3. Let A be a Banach *-algebra, let © be a Banach re-
presentation of A on a Banach space X with a striclty cyclic vector &y in X.
If there exist a state f on A such that

(i) fa*nVi=|z ()&l (z€A),

then X will be a Hilbert space in the same norm as the initial one, and « is a
*—representation of A on H.

REMARK. (a) Let A be a Banach *-algebra. A positive linear form f on
A is said to be a state if 1 is the minimum value of = such that
| f(z) 12<mf(z*z) for all z€ A.

(b) If A is a C*-algebra with unit ¢ (|le]] =1), then a positive linear
form f on A is a state if and only if ||f]|=1.
For the proof, let f: A—C be a state, then
| f(2) 12<m f(z*z) <m|| fllz*z]|=ml|| f |l|||%
then

If(il)lzsmllfll (z%0), ie lfll<m

ll=|

Hence, if min{m : |f(z) |2<mf(z*z), 2= A} =1 then || fl=1.
Conversely, suppose that || f|l=1. Since
[ F(2) 12< Fle) f(z*z) < | fllllell f(z*2) =f(2*2) (z€A)

we have min {m : | f(z) |2 mf(z*z), z€ A} =1.
A subset {z€A : f(z*z) =0} of A is said to be the left kernel of the
state f.
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THEOREM 2.4. Let A be a C*—algebra with unit, let © : A—>B(X) be a
strictly cyclic Banach representation with a strictly cyclic vector &y in X. If
a subset {x€A :w(x)&y=0} is a left kernel of a state f of A, then m is
Naimark-related to a *-representation T. (% is the *—represehtation defined in

2.2).

Proof. We put J={z€A: n(2)&=0}. J is a closed left ideal of A.
Define a map ¢ : A/J->n(A)§,=X by ¢(z+J)=n(x)&, xzEA. Then ¢ is
a bijection and continuous;the continuity from the quotient space A/J follows
from the fact that

llg@+NlI=llz(z+2)éll, z€J. <lizllllz+=llli&ll, =<

Hence ||¢ (z+J) | <lIzllli&llllz+T)l¢ (@=A), where || - |lp is the quotient
norm on A/J. Therefore ¢ is a homeomorphism by the open mapping theorem,
whence there exist m>0 such that

lg@+Dl=llz(z)éll Zmllz+T o (z€4).
Since A is a C*-algebra, ||f||=1 so we have following inequality
flz*z) =i£11ff((x+z)*(x+z)) Slisl}f”x+z“2=”x+J||20-

It follows that
Fa*a) <lla+T %<z (@) ol

ie f(e*)V2<Klz(z)&oll, <k=%>'

Therefore, by Theorem 2.2, the conclusion follows.

LEMMA 2.5. Let A be a C*-algebra with wunit, J a closed left ideal of
A such that A/J={z+J : xE A} is separable for the quotient norm. Then
there exists a state f on A such that

J={z=A : f(z*z) =0}.
Proof. Let A*={z*z : z€A}, then the set A*(1Jis a face in the positive
cone A*., For any z€A/J, z*2>0 and z*z&J. Applying the geometric

form of Hahn-Banach theorem to the fact A*N.J, we obtain a state f on A
such that

f=0on J, f(z*z)>0 (z=A) and f(e)=1.

Since A/J is separable, there exists a sequence {z,} in A such that f,|J
=0’ fn(xn*xn> >0 and fn (e) =1 (7121, 2, ...).
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We put f=§_°_}l—éln—f,,, then obviously f is a normalized state on A with

f1J=0. Moreover since J is a left ideal and |f(y)|2<f(»*y)f(e) holds
for any state f on A,

fr*y) =0 y*ye =yl
ie. J={zx€ A flz*z) =0)}.
From the Theorem 2.4 and the Lemma 2.5, we have a following

COROLLARY 2.6. Let A be a C*—algebra with unit, let 7 : A>B(X) bea
strictly cyclic Banach representation. If A/J is separable for the quotient norm,
then 7w is Naimark-related to a *—representation, where J= {x€ A : w(x)&y=
0} and &, is a strictly cyclic vector of .

Also we have the following result:

COROLLARY 2.7. Let A be a separable C*-algebra with unit, let m: A—
B(X) a strictly cyclic Banach representation. Then 7 is Naimark-related to a
*~representation of A on some Hilbert space.

2.8. ExawvpLE. We illustrate that the conditions (i) , (ii) of the Theorem
2.2 are resonable.

Let 4 be the set of all complex homomorphism of a commutative Banach
algebra A with identity. The formula £(k) =h(z) (h€4, 2 A) assigns to
each z€ A a function £ : 4—C. We call £ the Gelfand transformation of
z. Let A={#:z€A}. The Gelfand topology of 4 is the weak topology
induced by A. Obviously AcC(4), C(4) is the algebra of complex con-
tinuous functions on 4. The set 4 equipped with the Gelfand topology is
called the maximal ideal space of A; this is a compact Hausdorff space.

The Gelfand-Naimark theorem says that if A is commutative C*-algebra
with the maximal ideal space 4, then the Gelfand transform A: A—Ac
C(4) is an isometric isomorphism of A onto C(4) which has the property
that (z*)*=2%.

We define a representation # : A—=>B(A) of a commutative C*-algebra
with unit and with the maximal ideal space 4 on A by n(z)y=zxy. Then =
is a continuous Banach representation with a strictly cyclic vector e (unit of
A).

Also we define a linear functional f: A—C by f(z) =[,idy, where pisa
positive regular Borel measure on 4 such that x#(4) <1, supp pu=4.

Then f(y*z) =[,25*dp=[.E5du
and flz*z) =[,]z|2du=0<= 1 =0<=2=0
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hold by the Gelfand—Naimark theorem. Therefore
{z€A : 7 (z)e=0} = {z A : f(z*z) =0} = {0},
and we can define an inner product <,>> in A by
(z, w=Ff(y*z) (z,y€4).

Furthermore,

f@*2)V 2= ([,12(R) |?d (h)) "/ *<max|2 () | =[]l

=lzll=lz(@)ell (z€A4).
iLe flz*z)V2<||z(z)e] for all z€ A.
In this case the extension Z of z is defined by z(z)y=lim z(z)y,=zy

(yeH).

If #: A->B(X) is an essential algebraically irreducible Banach represen-
tation of a Banach *-algebra A on X, then every nonzero vector & in X is
strictly cyclic and the set {zr€A : 7(2)é=0} is a maximal modular left
ideal.

Thus if there is a state f on A such that {z€A : z(z)£=0} is the left
kernel of the state f, then 7 is Naimark-related to a *-representation. The
converse of this statement is true ([4], p.9, Theorem 1).

3. Conditions for a strictly cyeclic Banach representation to be a
*-representation.

Let A be a Banach *-algebra and f a state on A. f is said to be pure
if every state on A dominated by f is of the form Af (0<A<I).

3.1. THEOREM. Let A be a C*—algebra, ©: A—>B(X) a strictly cyclic
Banach representation with a strictly cyclic vector &y in X. If there exists a
pure state f on A such that {x=A : n(x)&y=0} is the left kernel of f, then
X is a Hilbert space in an equivalent norm and w is a *-representation of A
on this Hilbert space.

Proof. M= {z€A : f(z*z)=0} is a closed left ideal of A, we define an
inner product on A/M={z+M : z€ A} by

(z+M, y+M)=Ff(y*z) (z,y€4).

Then |z+M|=f(z*z)1/2 is a norm of z--Mc A/M. This norm coincides with
the quotient norm ||z+Mllo=inf {|lz+=|| : z&M} on A/M ([16], Theorem
1). Thus A/M is a Hilbert space for the norm || - |lo. Define a map ¢ : A/M
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—r(A)&=X by ¢(z+M)=x(z)& (z=A), then ¢ is bijection and con-
tinuous. Therefore ¢ is a homeomorphism by the open mapping theorem,
whence two norms || - ||o and the original norm of X are equivalent. Now,
we define a new norm || - ||z of X by llz(@)&ll=llz+Ml|e (=f(z*2)1/?).
Then this is the induced norm by an inner product on X, that is, <z (z)
Eo, T(M&>=F(y*z). And, by definition, the norm ||z (z)&l,=f(z*z)/ 2
on 7(A)&=X is a Hilbert space norm. Obviously two norms|| - ||, and the
original norm || - || on X are equivalent. We put (X, | - |l,)=H, then by
proof of the Theorem 2.2, 7=z : A—B(H) is a *-representation.

3.2. LEMMA. Let A be a Banach algebra with unit e, |le||=1. Let K be a

proper left ideal of A. Then there exists a maximal left ideal M containing
K.

Method of the proof is used a standard tool, we omit the proof. We
have also a following Lemma.

3.3. LEMMA. Let A be a Banach algebra. A maximal left ideal M of A

is closed.

3.4. THEOREM. Let A be a C*-algebra with unit e, let ©: A—B(X) be
a topologically irreducible Banach representation. If there is a strictly cyclic
vector &y of w in X, then X is a Hilberts pace H in an equivalent norm and
T 18 a *-representation of A on H.

Proof. We put K={z€ A : n(2)&,=0}, then K is a closed left ideal of
A. We show that K is maximal. By Lemma 3.2 and 3.3, there exists a
msximal left ideal M of A such that KCM=M. Let A/K be a quotient
space equipped with the quotient norm. A map ¢ : A/K—n(A) =X, de-
fined by ¢(z+K)=xn(z)& (z€A), is a homeomorphism.

Since M is closed in 4, M/K is closed in A/K. Thus ¢ (M/K) =n(M)&,
is closed in X since ¢ is a homeomorphism.

And since

1(2)¢M/K)=rn(z)x(M)&Sa(M)se=0(M/K) (z€A),
$(M/K) is a closed z-invariant subspace of X. Hence we have
d(M/K)=X=n(A)é=¢(A/K).
ie. M/K=A/K or M=A, whence M=K.
Therefore, there exists a state f on A such that
K={z€A: f(z*z)=0}, ||fll=F(e)=1 ([13], p.259, p.266).
This state f is also a pure state ([1], p.463).
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It follows that there is a pure state f on A such that
z€A : (2)&=0} = {z€ A : f(z*2) =0}.
Thus, by Theorem 3.1, the conclusion follows.

The condition on existence of strictly cyclic vector &, in Theorem 3.4
may be replaced by another condition. In general we have a following fact:
Let X be a locally convex topological vector space over K(K=C or R) for
a topology 7, let S be a convex subset of X, then S is z—closed if and only
if it is weakly closed ([14], p.158).

3.5. COROLLARY. Let A be a C*—algebra with unit, let 7 : A—B(X) be
topologically irreducible Banach representation. If there is a vector £, in X
and there exists a left ideal J of A such that 0xn(J)E, is weakly closed in
X, then the same conclusion follows as the Theroem 3. 4.

For a proof, since w(J)&, is a linear subspace of X, it is comvex. By the
above statement w(J)&y is weakly closed if and only if it is norm closed in
X. Thus w(A)Ey=X. Thus the result Follows.

Now we are going to proove the following.

3.6. THEOREM. Let A be a C*-algebra with unit, © : A—>B(X) a Banach
representation with a strictly cyclic vector & of =.

If there exists a irreducible state f on A such that (xS A : w(z)&=0} is
the left kernel of this state f on A, then X is a Hilbert space in tan equiva-
lent norm, f is a strictly pure state on A and 7 is an algebraically irreducible
*_representation of A on this Hilbert space.

In order to prove this theorem we have to add some definitions and pre-
liminary subjects.

A positive sesquilinear form (PSE) ¢ on a *-algebra A said to be adju-
nctive if ¢(zy, 2) =¢(y, z¥2) (z,3,2€A4).

If fis a state on a *-algebra A4, then the formula

o7z, ) =f(y*z) (z,yEA)

defined an adjunctive PSF ¢y.
Let ¢ be an adjunctive PSF on a *-algebra A and if

Ny={z€A : ¢(z, ) =0}

then N, is a left ideal of A. The quotient vector space Ay=A/N; is an
inner product space with inner product defined by

(z4lyy) =¢(z, ), where z;=z+N; (z€A).
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For each a€ A, x4~ (ax), is a well defined linear map on the quotient
vector space Ay; We denote it by the formula T,z4=(az);. Then this sa-
tisfies (T,zyly,) = (24l Tonyy).

A positive sesquilinear form ¢ on a *-algebra A is said to ‘be admissible
if (i) ¢ is adjunctive and (ii) for each 2= A there exists a constant K,>0
such that ¢(az, az) <K, f(z, z) for all z€ A.

If ¢ is admissible PSF on a *-algebra A then T,: A;—A, is continuous
linear map on the inner product space A,. The unique continuous extension
of T, to the completion H, of A, will denote also by T, thus T,& B(H,).

Let A be a *-algebra. A representation a— T,EB(H,) is said to be
*-representation determined by a admissible PSF ¢ on A. '

An admissible PSF ¢ on a *-algebra A is said to be strictly irreducible
if H;%0 and if the *-subset {7, :a€ A} of B(H,) is striclty irreducible.

A state f on a *-algebra A is admissible if the adjunctive PSF ¢y dete-
rmined by ¢;(z, y) =f(y*z) is admissible, and a state f is strictly irreduci-
ble if the *-subset {T,€B(Hy,)|a€ A} is strictly irreducible.

We denote Hy=H,,, thus Ny—{z€A : f(z*2)=0} and A;=A/Nj.

Let A be a Banach *-agebra. A positive form f on A is called strictly
pure if f is pure and the *-representation of A determined by f (or ¢y)
is strictly irreducible.

Proof of the Theorem 3.6. Since on a C*-algebra with unit every state
f is continuous and f is admissible ([14], p.293). Therefore f is strictly
irreducible if and only if f is a pure state on A ([14], Theorem 67.22),
in this case f is also a strictly pure state ([1], p.460, Theorem 2. 1}.

. Hence, by assumptions and Theorem 3.1, X is a Hilbert space H in an
equivalent norm and z is a *-representation of A on H.

We put Ny={z€A: f(z*z)=0}, As=A/Ny and |zsl=|z+Nsl=
f(z*2)V2 (z€A). This norm | - | on Ay is a complete norm and the map
¢ : A;—r(A)&=X defined by ¢(z;) =n(z)&(xsE Ay) is a homeomorphism.
And the *-subset {Ta:a€ A} ©B(Ay) (=B(Hy)) is strictly irreducible by
the hypothesis on f, where T, is defined by T,zy=(az)s, zsEAf.

. Moreover since ¢(T,zs) =¢(az+Ns)=r(a)x(z)&, we have

¢(Ta$f) =7z(a)¢(xf) (aEA, :cfEAf).

It follows that the *-subset {T,: e A} of B(H)) is [strictly irreducible
if and only if z is algebriaically irreducible; for, if z(a)SCS for allac A
then there exists a unique subset M of A; such that ¢(M)=S. Thus

z(a) (M) ¢ (M) = 6(T,M) (M) — T.MM
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for all a= A, and obviously
M=Ny; or Ay if and only if S={0} or X.

Therefore z : A—>B(Hy) is an algebraically irreducible *-representation of A
on Hy, we put Hy=H, this completes the proof.
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