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ON CERTAIN SUBCLASSES OF ANALYTIC
P-VALENT FUNCTIONS

SHIGEYOSHI OwaA*

1. Introduction

Let J, denote the class of functions
f(2) =zP+§.; @pin2?*" (pE)
analytic and p-valent in the unit disk %= {|z]<{1}. We say that f(z)
belongs to the class J,(e,b) if f(2) €J, satisfies the condition
1) 4

pz?7!

1 —

pap ] +(1—2a)
for a(0<a<{1) and 5(0<6=1). Further f(z) is said to belong to the class
K,(a,b) if 2f’(2)/pEI3,(a,b). Recently S. Owa [10] showed a distortion
theorem, coefficient estimates and a radius of convexity for the class J,(aq,
b).

In particular, the class <;(0, %) was studied by K.S. Padmanabhan [14]
and later by T.R. Caplinger and W. M. Causey [4]. Furthermore S. Owa
[11], [12] studied the class S;(a, ).

Let G, denote the subclass of JJ, consisting of functions analytic and
p-valent which can expressed in the form

<b (z€)

f(2)=2p— 55, @y 2t (@yin20, pEN).

We denote by T,(a, ) and @,(a, b) the classes obtained by taking
intersections of the classes ,(a,5) and X,(a,b) with G,, respectively.

In 1976, V.P. Gupta and P.K. Jain [7] studied the class ,(a, b).
Moreover H. Silverman [17], H. Silverman and E.M. Silvia [18], [19]
and O.P. Ahuja and P.K. Jain [2] have studied certain subclasses of
univalent functions with negative coefficients. For other classes of analytic
p-valent functions with negative coefficients, R. M. Goel and N.S. Sohi
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[6], RRM. Goel and S. Owa [5] and H. M. Srivastava and S. Owa [20]
showed some results.

2. Coeflicient estimates

THEOREM 1. A function
FR =203, ayenet* (ap1a20, pE1)
is in the class T,(a,b) if, and only if,
3 om) (1+8)a, <25 (1—0)p.
This result is sharp.

Proof. Let |z]=1. Then we get
| f/ (2) —p2t~t| —b| f' (2) + (1—2a) p=#~1]

21 (p+ n) ap+nzp+n_1

5| 20— 2= 5 (44 apeettn?

< i::l (p+7) A+B)aypn—2b(1—a)p

=0.
Hence, by the maximum modulus theorem, f(z) is in the class G,(a, 5).
On the other hand, assume that

i) 4
P!
£’ (=)
—?«ZT—I_ (1—20)
Since |Re(z) ]| =|z| for any 2, we have

3 (p+n) apraettnt
2(1—a)pz?™1— 21 (p+n)ayiqztt=?

IA

<b (z€%).

=b.

€Y Re

Choose values of z on the real axis so that f/(z)/2?7! is real. Upon clearing
the denominator in (1) and letting z—1 through real values, we get

f:-ll (P+n>aﬁ+”§26(1_a)P_éb(P’{'n)aiH_n
which implies that
g;l (p+n) (1+8)ayn =26(1—a)p.

The function
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Zb(l—a)P +
—pp— SN2 /Y optn
@ == yate *

is an extremal function.

COROLLARY 1. Let a function

F(2)=22— 5 ayuus?™ (peit)
be in the class T,(a, b). Then we have
2b(1—a)p

ap+n§"——"’———"‘—‘”‘
(p+n)(1+0b)
for any n=1. The equality holds for the function

—ep — 2b(1’“a)l> +n
F& == are

THEOREM 2. A function
f(z)=zl’—§ap+nz”*" (a4, 20, pE)
is in the class @,(a,b) if, and only if,
5 (p+m?(A+h)a, <21 —a)p
This result is sharp.
Proof. The function f(z) is in the class @,(a, b) if, and only if,
zf'(2)/pETy(a, b). Now, since

n=1

be replacing a,., by {(p+n)/p}a,., in Theorem 1, we have the theorem.

COROLLARY 2. Let a function
f(z):zp—zl ap+nzp+n (ap'f-ng()) PE%)

be in the class @,(a,b). Then we have
2b(1—a)p?
<
G =248
for any n=1. The equality holds for the function

s 26(0—a)p? n
F& == a e =

3. Some properties of 0,(a, b) and @,(a, b)

THEOREM 3. Let 0=La’'=a”’<1 and 0<b' <V <1. Then we have
0,(a’, ¥')DT,(a", ¥).

Theorem 3 is clear from the definition of G,(a, ).
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THOREM 4. Let 0=a’<a’’<1 and 0<V’' <’ <1. Then we have
@P(al’ b”)DQP(a", ).

Proof. Let a function
F@=20— % apenet** (ap1aZ0, pE1)
be in the class @,(a’’, #’) and &"'=8"+e¢. Since
5 (p+m2(1+8)aya 2 (1-a") p?
by Theorem 2, we obtain

5 (p+n)2A+8")ap

I

(p+n)2(A+b' +e)ay,

I

3 o2+ asate 5 (07 %y
1e1_ a2y 268" (1—a’") p?
<2(1—a"")p*+ e
<26’ (1—a'")p2+2eb’ (1—a’”) p?
=2"+e)(1—a’")p?
=20 (1—a’)p?
which gives that f(z) €€,(a, 3").

THEOREM 5. Let a function

F@ == 2 apne* (ap1a20, pEN)

be in the class @y(a,b). Then f(z) belongs to the class
B,((ap+1)/(p+1), &), that is

e,(a, b)c@,( ‘;{’:f , b»).

Proof. Since f(z) €0,(a,b), we have
3 () (1+D)ay,s-2UZD2

p+1
ap+1
—2b(1— 2y )
with the aid of Theorem 2. Further
ap+1
0<, pt+1 <1

for 0=a<1 and p<%. Consequently we have the theorem with Theorem 1.
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4. Distortion theorems

THEOREM 6. Let a function
f(z)=zP——Z=lap+,,z1’+" (54220, pEX)
be in the class G,(a,b). Then we have

- 26(1—a)p 2|2t
[ f(x)|2]=]? CESCED)) |z|#+2

and

2b(1—a)p +
[f()]=]2]2+ GFDAED |z|2+2

for z€ . Further

7 -1_ 2b(1—a)j> ?
£ (@) | 2plelpr - ZUAZDL

and
’ 1y 26(0—a)p »
772 [ Splelrit 22 1y

for z€ 0. These estimates are sharp.

Proof. By using Theorem 1, we obtain
(p+1) (148) BapenS T, (p47) (1+5)apnS2B(1~a)p
which implies that

- 26(1—a)p
<
2= T a+n
Consequently we have

If(lz |27 =2 apenl2l?®
=
2 |z]P—|2|#"1 T apen
n=1

=>z|t— 2b(1—a)p | 2|2+

G+1 A+8)
and
£ @121+ 3 apialz] Pt
S lelo+ 1P 2y
26(1—a)p +1
= ? b4
=t rnary
for ze 4.

In order to show the second half of the theorem, by using
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s %(1—a)p
L X egAN P
2 (ptmlap,=s =00k,

we obtain
|F/(2) 1 2121271 = 3 (p+m)apenl 2127571
Zplzlt— 1212 5 (p+m)apen
~ 26(1—a)p
1 = HE
Zplzit 173 |z]?
and

| F7 @1 Sp12l#74 5 (pa)apealzle

<plzl?i+ 1212 T (p+m)apes

_ 26(1—a)p
= pm1y N7 AP |
Plzl 145 |z]
for z€%. The bounds are sharp and are attained for the function
26(1—a)p 1
f p_ <O\ —a)P p+1
() == (p+1)(1Q+b) ®

COROLLARY 3. Under the hypotheses of Theorem 6, f(z) is included in
the disk with center at the origin and radius 1+26 (1—a) p/(p+1) (1+8).
Further f'(z) is included in the disk with center at the origin and radius

p(1-+36—2ab)/ (1+8).
THEOREM 7. Let a function
f(z) =zp—~2::1ap+nzp+n (ap'#ngo’ PE%)

be in the class @p(“’ b). Then we have
26(1—a) p? "
= p— b
[ f(2) =12 CEE(ED) |z]

and

217(1_“)?2 +
I f1=]zl2+ CSIEED) [z|#+t
for z€U. Further
’ -1 26(1"‘[1)?2
[ f (=) =plzlp™? D) A48 [z]?

and 25 (1—a) g2
7 - —a)p
[ ff(2) | =plzltt+ GFD G55 [zl?

for z€U. If pef— {1}, then we have
_ 26(1—a) p? -
44 > — p-2__ <UL I p-1
L7 1zp(p—1) |2| 155 [zl
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and

7@ | Sp(p=1 lz|#-2 BAZOL 110

for z€U. The estimates for f(z) and f'(z) are sharp and are attained for
the function

—op__ 26(1—a)p? +1
o= ey

Proof. The proofs for | f(z)| and |f’(z)!| are obtained by using the same
technique as in the proof of Theorem 6 with the aid of Theorem 2. Further,
for pe®— {1} and z€¥, we have

L7 () 1 zp(p—1) |2|"'2“§1 (P+n) (p+n—1)a,.lz|etn2

2p(p—1) |21#72— 121215 (p+ )%,
= p(p—1) |z|t-2—LA—a)P? |1

1+&
and

|£7(@1Sp(p=1) 21274 5 (p+m) (p+n—Dapslzl#>
<p(p—1) |21+ 12115 (p+m) %y

— 2y 2b(1—a)p? -1
Sp(p—D 2|+ et lel?
by using Theorem 2.

COROLLARY 4. Under the hypotheses of Theorem 7, f(z) is included in
the disk with center at the origin and radius 1+2b6(1—a)p?/ (p+1)2(1+5),
and f'(z) is included in the disk with center at the origin and radius p+2b
(1—a)p?/ (p+1) (1+8). Further f''(2) is included in the disk with center
at the origin and radius p(p—1)+26(1—a)p?/ (1+5b).

4. Closure theorems

THEOREM 8. Let
Fi®) =2 =5 0y, pra?™ (@i, p1nZ0, PEN)
be in the classes T,(a;, b;) for each i=1,2,3, ..., m. Then the function
1 o0 m
=l —m e . ptan

is in the class T,(a,b), where a=Min{a;} and b=Max{b}.
1gism 15ism
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Proof. Since fi(2) €G,(a;, b;) for each i=1,2,3, ...,m, we have
T (o4m) (1459 e, p1aS:(1-a)p

by Theorem 1. Hence we obtain

5(21) (L 5 aipea)

IA
\]
sl
~
(-

|
8
N

because 26’ (1—a’)/ (1+8)=20""(1—a’")/(1+8"") for a’<a’”’ and & =p".
Thus we get

£ Gtm @+0)( L Eaip)sp0-as
which shows that k(2) €T,(aq, 8).

THEOREM 9. Let
Fi(e) =2 =3, 0y, punt?™ (@i, pa 20, PE)

be in the classes @, (a; b;) for eack i=1,2,3,...,m. Then the function

00

M@ =w—-L 5 (50 )
m a=1\i=1

i=

is in the class @,(a, b), where a=Min{a;} and b=}\/Iax {6} .
1Zi<m Sism

The proof of Theorem 9 is obtained by using the same technique as in
the proof of Theorem 8 with the aid of Theorem 2.

THEOREM 10. Let

f(Z) =zf— iap+nzp+n (ap+ngos Pe%)
and
g(2) =22 — 3 byt (Bp+a20, PEN)

be in the classes T,(a,b) and @y(a,b), respectively. Then the function

+1 = .
#(2) =zP——( 5;+1 ) §1 (“p+n+bp+n)21’+

is in the class G,(a, b).

Proof. Since f(z) €G,(a,b) and g(z) €0,(a,b), by using Theorem 1 and
Theorem 2, we get
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g;l (p+n) (1+b) 2y, <2b(1—a)p

and
> % (1—a) $?
2 (p+m) (1+9) bmg__(_ﬁg{)_i{_
Therefore we have
( 5;:—11 ) Z (p+m) (1+8) (apsntbpen) 26(1~a)p
which implies that & (z) €T, (a, b).

THEOREM 11. Let

fplz)=2? (pEe®)
and
—p_ 26(01—a)p n
Spin(2) =2¢ WZP ()

for n=1,2,3, . Then f(z) belongs to the class T,(a,b) if, and only if, it

can be expressed in the form
f(2) =‘Z=:ozp+nfp+n(z)y
where Ay, 20 and

§0 2P+”=1'

Proof. Assume that
f(2) =§ 2p+nfg+n(z)

s 26(1—a)p
= R A Ah

p+n2? R

Then we obtain
S (p+m) A+8)  26(A—a)p |_+
£ {tou BA-a)p  GIm a5 } =3 4o
This shows that f(z) €70, (a, )by Theorem 1.
On the other hand, let

f(Z) =zﬁ'~§lap+nzp+n (ap+n201 Pe%)
be in the class T,(a, b). Then, by using Corollary 1, we get
2(1—a)p

<
Crn =Tt (145)
for any 2=1. On putting

—_(ptn) A+8) =
Zp-i-n— 25(;;.“11)15 ap-l-n (71"'—1, 2, 3, )




50 Shigeyoshi Owa
and
2p=1= 5 Ay
we have the expression
F@=Z ApinF pia(2)-
This completes the proof of the theorem.

THEOREM 12. Let
fr(x)==2* (pE)

and

s 26(1—a)p? ta
fp+n(z) =z (P+n)2(1+b) z? (Pe%).

for n=1,2,3,-. Then f(z) belongs to the class Q,(a,b) if, and only if, it

can be expressed in the form
FD =3 Aprafpin(@,
where 25,20 and
Ezp+,=1.

The proof of Theorem 12 is given in much the same way as Theorem 11.

5. Hadamard products

Let f+g(z) denote the Hadamard product of two functions

F) == 3 appat™ (ap:20, pEN)
and

g(2) =2t =5 byeat™™ Bpra20, pEN),
that is,

f*g (Z) =zf— Z ap+nbp+nzp+n-
a=1

THEOREM 13. Let the functions

f(z) =zP— gl ap+nzp+” (ap+n 2-0’ P S %)
and
g(2) =zp—§lbp+nzp+" (bp-!-ngos PEX)

be in the classes Ty(a’,b") and Ty(a,b"), respectively. Then the Hadamard
product frg(z) belongs to the class T,(a(2—a),b), where a=Min {a’, a’"} and
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b=Max {¥,5""}.

Proof. Since f(z) €0,(a’,4’) and g(2) €G,(a’’,4""), by using Theorem
1, we have

’21 (P+ ﬂ) (1 +b) ap+nbp+n

2by(1—a
s2-a)r- gt
=2b{1—a(2—a)}p,
where by=Min {#’,5'’}. Further 0=a(2—a)<1, because 0=a<1. Conse-
quently the Hadamard product fxg(z) is in the class G,(a(2—a), b) by
Theorem 1.

COROLLARY 5. Under the hypotheses of Theorem 13, the Hadamard product
fxg(2) belongs to the class T,(a, b).

Proof, By using Theorem 3, we obtain
B, (a, ) 5T,(a(2—a), )
which implies that f+g(2) €T,(a,b) with Theorem 13.

THEOREM 14. Let the functions

f(z)zzi’—-i'!aﬁnzl’*" (@52 20, pEN)
and
g(z)zzp—glbpﬂlzp-“‘ (bp+n20; PE%)

be in the classes Q,(a’,b") and €,(a’’, "), respectively. Then the Hadamard
product fxg(z) belongs to the class @,(a(2—a),b), where a=Min {d’, a’"} and
b=Max {¢’, b'"'}.

The proof of Theorem 14 is obtained by using the same technique as in
the proof of Theorem 13.

COROLLARY 6. Under the hypotheses of Theorem 14, the Hadamard product
frg(2) belongs to the class @,(a,b).

THEOREM 15. Let the functions

F)=2r= 3, apupetts (a5-n20, PEN)
and
g(z) :zp— Zl bp+nzp+n (bp+ngoa PE%)

be in the same class T,(a, b) with 0=a<1 and 0<b=+2/2. Then the
Hadamard product fxg(z) belongs to the class €, (a(2—a), 2b%).
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Proof. Since f(z) €T,(a, b) and g(z) EG,(a, b), by using Theorem 1,
we obtain
3 (0+m) 1+ e, =2 1—)p

and

(p+7) (1+8)b,1, <2 (1—a)p

for any n=1. Hence we have

”é; (P+7l) z (1 +262) ap+nbp+n

éi_jil (p+m)2(1+8) 2041005 n

S {1—a@—a)} %
Further 0=a(2—a) <1 for 0=a<{1 and 0<{282=<1 for 0<6<+/2/2 Thls
completes the proof of the theorem with Theorem 2.

THEOREM 16. Let the functions

f(z) =Z?“‘1§1 ap+nzp+n (ap+n20’ PE%)
and
g() =2 =5, byene?™ (Gpaz0, pEI)

be in the same class T,(a,b). Then the Hadamard product fxg(z) belongs to
the class €4(a(2—a), b).

Proof. Since f(2) €T,(a,b) and g(z) €G,(a,b), by Theorem 1, we get
5::'1 (p+n)2(1+2) aj,+,,bp+,,§.ﬁi_li(1:_‘£)2i

1+5
=2%{1—a(2—a)}p?
which gives that fxg(2x) €€(@(2—a),b).

6. Fractional caleulus

There are many definitions of the fractional calculus, that is, the fractional
derivative and the fractional integral. In 1978, S. Owa [13] gave the
following definitions for the fractional calculus.

DermNiTioN 1. The fractional integral of order « is defined by
- 1 [ f@Qdt
PO =y Jo -0
where >0, f(z) is an analytic function in a simply connected region of
the =z-plane containing the origin and the multiplicity of (2—{)*1 is
removed by requiring log(z—Q) to be real when (z—{)>0. Moreover,
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f(z)=lim D, *f ().
a—0

DEFINITION 2. The fractional derivative of order a is defined by
« — 1 d (= f(©dg
D@ = & e oo
where 0<{a<{1, f(z) is an analytic function in a simply connected region
of the z-plane containing the origin and the multiplicity of (z—)~* is
removed by requiring log(z—C) to be real when (2—)>0. Moreover,
() =lim D:f (2).

DErFINITION 3. Under the hypotheses of Definition 2, the fractional
derivative of order (n+a) is defined by

Dznﬂxf(z) =
where 0<<a<{1 and n€% U {0}.

n

d 5.
L Df (),

For other definitions of the fractional calculus, see R.P. Agarwal [1],
W.A. Al-Salam [3], T.J. Osler [97, B. Ross [15], K. Nishimoto [8]
and M. Saigo [16].

THEOREM 17. Let a function
f(z) =zP—-i @pin2P™" (ap:,20, pEX)
n=1
be in the class T,(a,b). Then we have

—a I'(p+1) vafi_ 26(Q—a)p
D@ | 2D e b 7?;§ﬁ¢54zq
and
e I'(p+1) | _ip+a 26(1—a)p .
lDz f(z)léml‘—lp {1‘+‘ (P+1) (1+b) l~|}
Jor 0<a<1 and z€U. Further
—a P(P+1) +a— —
{D,! f(Z)!zmlz!” 1 {(P a)
_2(—a)p(pt+ilta) lzl}
(+1) A+5)

and
-a I'(p+1) ran
Do @) | STzl [t

26(1—a)p(p+1+a)
T GT ) A 'z'}

for 0<a<1 and z<1.

Proof. We consider the function
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_T+14+e) ap

=zP—i I'p+a+1) I (p+1+a)

A T(prntita)l o+1)

= zP—-—- ZI Ap+nzp+n,
n=

@pin2?t®

where
A, —L@+at DI p+1+a) |
P T (prntl+a) (1) 2™
By using 0<<A,+,<<@,:» and Theorem 1, we have
I (ptn) (1+8) Apea= I, (0+m) UH8) a1
<%(1—a)p

which implies that F(2) is in the class T,(e, b). Consequently, by Theorem
6, we get

_ 25(1_‘1)? +1
[F(2) | =|z|? CESIGET)) |z|#

and
< 26(1—a)p +1
e == (=
which give the first half of the theorem. Moreover, by using the second
half of Theorem 6,

_ 26(1—a)p
’ > f ot P AN Sl P
'F (z)l_Plzl 1+5 lzl

and
|F @) | Splelpe-2UDL s
for z=%. Hence we have
e T(p+1) . 4 2(1—a)p
D2 @) |2l H D jz)efpizipr— L0 |10

—alz|7|D,*f(2) |

I'(p+1) vaetlin N 26(0—a)p(p+1+a)
Fotita 2 1{(" @) (p+1) 1+5) 'z']

\%

and
o I'(p+1) . L 2A—a)p
IDof () | S EED g g1zt 2UAZDP o))
+alz| D, f(2) |
T'(p+1D) ra- 26(1—a)p(p+1+a)
=Torita 2 1{(p+“)+ (p+1) A+5) Izl}
for 0<a<1 and z<1.
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ReMARK 1. If we let @—0 in Theorem 17, then we have Theorem 6.

COROLLARY 7. Under the hypotheses of Theorem 17, D, *f(2) is included
in the disk with center at the origin and radius
I'(p+1) [1+ 2%(1—a)p }
I'p+1+a) (+1)Q+b) §°
Further D,'~°f(2) is included in the disk with center at the origin and radius
I'(p+1) 2b(1—a)p(p+1+a)
To+1+a {(P+“)+ +1) 1+5)

THEOREM 18. Let a function
f(Z) =z — Zl ‘11’-+712P+’l (ap+n 2.0, PE%)

be in the class €,(a,b). Then we have

. FG+D | pafy_ BA-a)p® |,
D s L B s e eont ]

and

—a P(P+1) +a Zb(l_a).bz
et e R s Reeonll
for 0<a<1 and z<U. Furthermore
B FGAD | ipeas g
D2 () | 2 a1 e [ (p—e0)
260 —a)p(p+1+a) lzl}
(p+1)2(1-+5)

and
1D3-2f () | £ E PFD g et | (p+ o)

= I'(p+1+a)
2b(1—a)p?(p-+1+a)
M CES e ey Izl}

for 0<a<1 and z<1.

The proof of Theorem 18 is given in much the same way as Theorem 17
with the aid of Theorem 7.

REMARK 2. If we let ¢—0 in Theorem 18, then we have Theorem 7.

COROLLARY 8. Under the hypotheses of Theorem 18, D, %f(2) is included
in the disk with center at the origin and radius
I'(p+1) {1i 2b(1—a) p?
F'p+1+a) "7 (+D20A+d)
Further D,2-°f(2) is included in the disk with center at the origin and radius
I'(p+1) { 26(1—a) p2(p+1+a) }
Totita (TG neaTs )
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THEOREM 19. Let a function
f(z) =zp_"§1 ap+nzp+" (ap+n20’ Pe%)

be in the class 0,(a,b). Then we have

« r(p+1) el 26(Q—a)p
IDAS@ | 2Fo g =gy 121 {1 G+1) 18 'z'}

and

a F(P_'_l) z|p—a Zb(l—a)p 2
Do) | St e 14— 2020 5|
Jor 0<a<1 and z<1U. Furthermore
+a ['(P+1) —1-a
| Dt f(z)’gmlzlp 1 {(P—a)
_ 2(0—a)p(p+1+a) Izl}
(+1) A +8)

and
ID1*ef (=) | é%lzl?"l‘“{(wﬂ)
26(0—a)p(p+1+a)
T GT) ) 'z'}
for 0<a<1 and 2€E, where E=1 if p=2 and E=U— {0} if p=1.

Proof. We consider the function

— P(P+1—a) al) a
G(2) _Wz D.*f(2)
o3 Lt DI (p+1—0)
=1 I'(ptnt+1—a) (p+1)

=22 — 2 Bpia2?™,
=

ap+,,z?+"

where
B, — L@+atDI (p+1-a)
P T ptaFl—a) (p+1) 2t

Since

+
BP+n§—( Ppn )a?+n
and f(z) €0,(a,b), we obtain
< o (pt+n)?
5 4w W0 B, 5 -2 (400,

=26(1—a)p.
Hence we have G(z2) €G,(a,5) by Theorem 1, further by using Theorem 6,

_— 20(1—a)p +1
[G)|=|z]|? CESNED) |z]?

and
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26(1—a)p +1
[G(x) | =|z|2+ 1) A48 |=|?

which imply the first half of the theorem. Moreover we have

’ —-1__ Zb(l—a)p
|G’ (2) | Zplzl? T [=]#

and
’ - 26(1—a)p
|G’ (2) | =plz|? 1+———-——1+b [z|?
with the aid of the second half of Theorem 6. Therefore, by using the
first half of the theorem, we obtain
1+a P(P+1) -a ~1._. Zb(l_a)P
Do) | 2l PED iz -spafp1— 2A—02 |,
—alz| " D2f(2) |
I'(p+1) p-i-al(p_ N 26(Q—a)p(p+1+a)

Tori—a {(” @) (p+1) 1+5) 'Z’}

%

and
+a P<P+1) - - Zb(l_a)P
IDof6) | 5 Dz e patpr 2AZ0L )
+alz| 7D, f(2) |
I'(p+1) e 26(1—a)p(p+1+a)
T #*7 {o+ar+ G+1) 1+5) =1}
for 0<a<{1 and z2€E, where E=1 if p=2 and E=%U— {0} if p=1.

A

COROLLARY 9. Under the hypotheses of Theorem 19, D.,*f(2) is included
in the disk with center at the origin and radius
T'(p+1) {1+ 26(1—a)p }
I'(p+1—a) (p+1 +8) }
Furthermore, let pE%— {1}, then under the hypotheses of Theorem 19 D,'*%f(z)
is included in the disk with center at the origin and radius
I'p+1) 26(1—a)p(p+1+a)
Fp+1-a) {("+“>+ +1) (+56) }
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