A NOTE ON A CLASS OF STARLIKE FUNCTIONS

SHIGEYOSHI OWA

1. Introduction

Let of denote the class of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic and univalent in the unit disk $\mathcal{U} = \{z : |z| < 1\}$. Then a function $f(z) \in \mathcal{S}$ is said to be starlike with respect to the origin in the unit disk \mathcal{U} if and only if

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0 \qquad (z \in \mathcal{U}).$$

We denote by \circlearrowleft^* the class of all starlike functions f(z) in the unit disk \mathscr{U} . Further a function $f(z) \in \circlearrowleft$ is said to be starlike of order $k(0 \le k \le 1)$ with respect to the origin in the unit disk \mathscr{U} if and only if

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > k$$
 $(z \in \mathcal{U})$

for some $k(0 \le k \le 1)$. And we denote by $\mathcal{O}^*(k)$ the class of all such functions f(z). This class $\mathcal{O}^*(k)$ was first introduced by M. S. Robertson [2] and has been studied by E. P. Merkes [3] and A. Schild [4].

In the present paper we consider the class $\Im(\alpha)$ $(1/2 \le \alpha \le 1)$ of functions $f(z) \in \Im$ satisfying the following condition

(1)
$$\left| \frac{zf'(z)}{f(z)} - \alpha \right| \leq \alpha \qquad (z \in \mathcal{U})$$

for some α $(1/2 \le \alpha \le 1)$. This class $\Im(\alpha)$ was introduced by R. Singh [5]. Furthermore R. Singh [6] showed some results for the class $\Im(1)$. We can see that $\Im(\alpha) \subset \Im^*$ for any α $(1/2 \le \alpha \le 1)$.

2. An argument theorem

At first, we need the following lemma was obtained by B. Pinchuk [2].

LEMMA. Let a function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be in the class $\mathcal{S}^*(k)$. Then

(2)
$$\left| \arg \left(\frac{f(z)}{z} \right) \right| \leq 2(1-k)\sin^{-1}|z|$$

for $z \in U$.

Now we show the following theorem for the function f(z) belonging to the class $\Im(\alpha)$ with the aid of Lemma.

THEOREM. Let a function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z_n$$

be in the class $\Im(\alpha)$. Then we have

(3)
$$|\arg\{f'(z)\}| \le 2\sin^{-1}|z| + \sin^{-1}\left(\frac{(2\alpha-1)|z|}{\alpha-(1-\alpha)|z|^2}\right)$$

for $z \in \mathcal{U}$.

Proof. Let

(4)
$$g(z) = \frac{zf'(z)}{\alpha f(z)} - 1,$$

then $|g(z)| \le 1$ and $g(0) = 1/\alpha - 1$. Further let

(5)
$$h(z) = \frac{g(z) - g(0)}{1 - g(0)g(z)} = \frac{zf'(z)/f(z) - 1}{\alpha - (1 - \alpha)(zf'(z)/\alpha f(z) - 1)},$$

then $|h(z)| \le 1$ for $z \in \mathcal{U}$ and h(0) = 0. Hence, by using Schwarz's lemma, we can write $h(z) = z\phi(z)$, where $\phi(z)$ is an analytic function in the unit disk \mathcal{U} and satisfies $|\phi(z)| \le 1$ for $z \in \mathcal{U}$. Consequently we obtain

(6)
$$\frac{zf'(z)}{f(z)} = \frac{\alpha(1+h(z))}{\alpha+(1-\alpha)h(z)} = \frac{\alpha(1+z\phi(z))}{\alpha+(1-\alpha)z\phi(z)}$$

After a simple computation, we have

(7)
$$\left| \frac{zf'(z)}{f(z)} - \frac{\alpha(\alpha - (1-\alpha)|z|^2)}{\alpha^2 - (1-\alpha)^2|z|^2} \right| \leq \frac{\alpha(2\alpha - 1)|z|}{\alpha^2 - (1-\alpha)^2|z|^2}$$

which gives that

(8)
$$\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| \leq \sin^{-1} \left(\frac{(2\alpha - 1)|z|}{\alpha - (1 - \alpha)|z|^2} \right)$$

Now, since $f(z) \in \mathcal{A}(\alpha)$, f(z) belongs to the class $\mathcal{A}^* = \mathcal{A}^*(0)$. Therefore

(9)
$$\left| \arg \left(\frac{f(z)}{z} \right) \right| \le 2 \sin^{-1} |z|$$
 $(z \in \mathcal{U})$

with the aid of (2) of Lemma. By using (8) and (9), we get

(10)
$$|\arg\{f'(z)\}| \leq \sin^{-1}\left(\frac{(2\alpha-1)|z|}{\alpha-(1-\alpha)|z|^2}\right) + \left|\arg\left(\frac{f(z)}{z}\right)\right|$$

 $\leq 2\sin^{-1}|z| + \sin^{-1}\left(\frac{(2\alpha-1)|z|}{\alpha-(1-\alpha)|z|^2}\right)$

for $z \in \mathcal{U}$. This completes the proof of the theorem.

COROLLARY 1. Let a function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be in the class of (1). Then we have

(11)
$$|\arg\{f'(z)\}| \leq 3\sin^{-1}|z|$$

for $z \in \mathcal{U}$.

COROLLARY 2. Let a function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be in the class $\Im(1/2)$. Then we have

(12)
$$|\arg\{f'(z)\}| \le 2\sin^{-1}|z| + \sin^{-1}0$$

for $z \in U$.

References

- 1. E.P. Merkes: On the products of starlike functions, Proc. Amer. Math. Soc. 13 (1962), 960-964.
- 2. B. Pinchuk: On starlike and convex functions of order α , Duke Math. J. 35 (1968), 721-734.
- 3. M.S. Robertson: On the theory of univalent functions, Ann. Math. 37 (1936), 374-408.
- 4. A. Schild: On a class of univalent starshaped functions, Proc. Amer. Math. Soc. 9 (1958), 751-757.
- 5. R. Singh: On a class of starlike functions II, Ganita, 19(1968), 103-110.
- 6. R. Singh: On a class of starlike functions, J. Indian Math. Soc. 32 (1968), 207-213.

Department of Mathematics Kinki University Osaka, Japan.