ON A COMPARISION THEOREM FOR PSEUDOMETRICS OF RIEMANN SURFACES

DONG PYO CHI, IL HAE LEE, SA GE LEE, SANG MOON KIM

Let S be a complex manifold and let ρ be a non-negative real valued function on $S \times S$. If $\rho(x, y) = \rho(y, x)$, $\rho(x, y) + \rho(y, z) \ge \rho(x, z)$ and $\rho(x, x) = 0$ for any three points $\{x, y, z\}$ in S, then ρ is called a *pseudometric* on S. We call any system which assigns a pseudometric to each complex manifold a *Schwarz-Pick system* if it satisfies the following conditions;

- (a) The distance assigned to the unit open disk in the complex plane is the Poincare metric (with constant negatice curvature-4).
- (b) If ρ_1 and ρ_2 are pseudometrics assigned to the complex manifolds S_1 and S_2 respectively, then $\rho(h(x), h(y)) \leq \rho(x, y)$ for all holomorphic mappings $h: S_1 \rightarrow S_2$ and for each pair of points x and y in S_1 . It is well known that the Kobayashi pseudometric is the largest and the Caratheodory pseudometric is the smallest one which can be assigned to complex manifolds by a Schwarz-Pick system.

The Kobayashi pseudometric K on S is defined as follows; For any pair of points x and y on S, we take a finite number of points $x=x_0$, x_1 ..., x_{k-1} , $x_k=y$ of S, points $a_1, a_2, ..., a_k, b_1, b_2, ..., b_k$, of the unit disk D in the complex plane, and holomorphic mappings $f_1, ..., f_k$ of D into S such that $f(a_i)=x_{i-1}$ and $f(b_i)=x_i$ for i=1, ..., k. For each choice of points and holomorphic mappings, we consider the number

$$p(a_1,b_1)+...+p(a_k,b_k).$$

Let K(x, y) be the infimum of the numbers obtained in this manner for all possible choices. The function K is called the Kobayashi pseudometric on S. For the definitions and other relevant results about pseudometrics, one can refer to [1] or [2].

The harmonic distance is defined in [4]. For convenience of readers we give the definition in the following. We call a real valued function u on a complex manifold S harmonic (=pluriharmonic) if it is given locally by the real part of a holomorphic function. That is, for each $z_0 \in S$, there

Received November 18, 1982

This research is partially supported by Korean Science and Engineering Foundation Research Grant.

is a holomorphic function defined on an open neighborhood V of z_0 with $\operatorname{real}(f(z)) = u(z)$ for all z in V. Let G be the family of all harmonic functions h on the unit disk D which satisfies h(0) = 0 and -1 < h(z) < 1 for all $z \in D$. Let $m(0, x) = \sup\{h(x) : h \in G\}$, where 0 < x < 1. Then it is well known that $m(0, x) = \frac{4}{\pi} \tan^{-1}x$. Let $m(z_1, z_2) = \sup\{h(z_1), h(z_2) : h \in F\}$, where F denotes all of the harmonic functions $h: S \to (-1, 1)$ with $h(z_1) = 0$ or $h(z_2) = 0$. Set $n(z_1, z_2) = \tan \frac{\pi}{4} m(z_1, z_2)$. The harmoni distance H is defined by the real valued function $H: S \times S \to R$, with $H(z_1, z_2) = P(0, n(z_1, z_2))$, where P is the Poincare metric of the unit disk D. It is clear that H satisfies Schwarz-Pick system except triangle inequality.

MAIN RESULTS: In the above we defined $m(0,x) = \left\{\frac{4}{\pi} \tan^{-1}x, \text{ for positive real } x \text{ in } D\right\}$, we need a description of the harmonic function $H: D \rightarrow (-1,1)$ with h(x) = m(0,x). The function h is well known, but, for convenience of our discussion, we describe it in the following. Consider the holomorphic one to one map f of the unit disk D onto $I = \{z : |\text{real}(z)| < 1\}$ with the conditions f(0) = 0 and $f(x) \ge 0$ for $0 \le x < 1$. Then f(z) is given by

$$\frac{2i}{\pi} \operatorname{Log} \frac{z+i}{1+iz} + 1$$
, where $i = \sqrt{-1}$.

Let $z=re^{i\theta}$. Then the argument of z+i/1+iz is given

$$\frac{\pi i}{2} - i \tan^{-1} \frac{2r \cos \theta}{1 - r^2}.$$

Hence we have

real
$$(f(z)) = \frac{2}{\pi} \frac{2r\cos\theta}{1-r^2}$$

and

$$f(x) = \frac{4}{\pi} \tan^{-1} x.$$

For convenience we describe this function in the following lemma.

LEMMA 1. Let f be the holomorphic one to one map of the unit disk $D = \{z : |z| < 1\}$ onto $I = \{z : -1 < real(z) < 1\}$. With the restriction f(0) = 0 and $f(x) \ge 0$ for all $0 \le x < 1$ and $x \in D$. Then it is given by

$$f(z) = \frac{2i}{\pi} \operatorname{Log} \frac{z+i}{1+iz} + 1$$
, where $\sqrt{-1} = i$.

The real part of f(z) gives the maximal harmonic function

$$real(f(z)) = \frac{2}{\pi} tan^{-1} \frac{2r \cos \theta}{1 - r^2}$$
, where $z = re^{i\theta}$,

and

$$f(x) = m(0, x) = \frac{4}{\pi} \tan^{-1} x.$$

Let G be the family of all harmonic functions $h: S \rightarrow (-1, 1)$ $h(z_1) = 0$ or $h(z_2) = 0$. Set $m(z_1, z_2) = \sup\{h(z_1), h(z_2) : h \in G\}$. The function space G is compact for the uniform convergence on the compact subsets of S. Hence there is an element g in G with $g(z_1) = m(z_1, z_2)$ or $g(z_2) = m(z_1, z_2)$, we call such a function the maximal harmonic function with respect to z_1 and z_2 .

LEMMA 2. Let S be a Riemann surface which admits the unit disk D as the holomorphic covering surface. Let h be the maximal harmonic function with respect to z_1 and z_2 with $h(z_1) = 0$. Then $K(z_1, z_2) = H(z_1, z_2)$ holds for any distinct points in S if and only if there is a covering map $\pi: D \to S$ with $\pi(0) = z_1$, $\pi(x_1) = z_2$, $K(0, x) = K(z_1, z_2)$ and $\pi \circ h = \frac{2}{\pi} \tan^{-1} \frac{2r \cos \theta}{1 - r^2}$.

Proof. Suppose $\pi \circ h = \frac{2}{\pi} \tan^{-1} \frac{2r \cos \theta}{1 - r^2}$ holds with the covering map π of the above. Then it is clear by the definition of the pseudometric H, we have $H(z_1, z_2) = K(z_1, z_2)$.

It is known that we can choose the covering map π so that it satisfies $\pi(0)=z_1$, $\pi(x)=z_2$ and $K(0,x)=K(z_1,z_2)$ (see [2]). Let h be the maximal harmonic function with respect to z_1 and z_2 with $h(z_1)=0$. Then $\pi \circ h$ is a harmonic function with $\pi \circ h(0)=0$ and $\pi \circ h(x)=m(z_1,z_2)\geq 0$. Suppose $K(z_1,z_2)=H(z_1,z_2)$ is true. Then we have $K(0,x)=K(z_1,z_2)=H(z_1,z_2)=H(0,z_1)$. Hence we have

$$m(z_1, z_2) = m(0, x) = \frac{2}{\pi} \tan^{-1} \frac{2x}{1 - x^2} = \frac{4}{\pi} \tan^{-1} x.$$

The harmonic function $\pi \circ h$ has values

$$\pi \circ h(0) = 0$$
 and $\pi \circ h(x) = \frac{4}{\pi} \tan^{-1} x$.

Now using the Schwarz lemma we conclude that $\pi \circ h$ is the real part of $\left(\frac{2i}{\pi} \operatorname{Log} \frac{z+i}{z+iz} + 1\right)$. Hence we proved that

$$\pi \circ h(re^{i\theta}) = \frac{2i}{\pi} \tan^{-1} \frac{2r \cos \theta}{1 - r^2}.$$

Now we prove the main theorem. A complex manifold S is called

hyperbolic if the Kobayahi pseudometric is a metric on S.

THEOREM. Let S be a hyperbolic Riemann surface which is not the unit disk and an annulus. Then the Kobayashi metric is strictly bigger than the Harmonic distance.

Proof. Let S be a hyperbolic surface (the unit disk is the holomorphic covering space), and assume $K(z_1, z_2) = H(z_1, z_2)$ for a pair of distinct points z_1 and z_2 in S. Then by the above lemma we can choose a holomorphic covering map $\pi: D \rightarrow S$ and a harmonic function $h: S \rightarrow (-1, 1)$, such that

$$\pi \circ h(re^{i\theta}) = \frac{2}{\pi} \tan^{-1} \frac{2r \cos \theta}{1 - r^2}.$$

Let G be the holomorphic covering transformation group of the covering π . Then we know that $\pi \circ h(A(z)) = \pi \circ h(z)$ holds for all A in G and $z \in D$. For the proof of the theorem it suffices to show that only an annulas admits such a group. For the calculation of the group G, we choose $I = \{z : Im(z) > 0\}$ as the covering space. Let $w(z) = \frac{i-z}{iz-1}$; w is a one to one holomorphic map of I onto D. Let

$$h(z) = \frac{2}{\pi} \tan^{-1} \frac{2r \cos \theta}{1 - r^2} = \frac{2}{\pi} \tan^{-1} \frac{z + \bar{z}}{1 - z\bar{z}},$$

then $w \circ h(z)$ can be represented as

$$\frac{2}{\pi}\tan^{-1}\frac{z+\bar{z}}{z-\bar{z}}.$$

Now any element $A \in G$ has the form $\frac{az+b}{cz+d}$, ad-bc=1 and a, b, c, d are real. Consider the relation $w \circ h(A(z)) = w \circ h(z)$. Then by a simple calculation we have

$$A(z) = \left(\overline{A(z)}\right)$$

It follows that A(z)=rz for some real number r. By the above discussion we know that G is trivial or it is generated by an element of the form A(z)=rz. Hence we conclude that S must be an annulus or the unit disk, and proved the theorem. In the above we used the fact that G is a Fuchsian group, for this one can consult with [3] or [5].

COROLLARY. Let S be a Riemann surface. Then we have the following relations between K and H;

(i) If S is not hyperbolic, then $K(z_1, z_2) = H(z_1, z_2) = 0$ for all z_1 and z_2

in S.

- (ii) If S is the unit disk, then $K(z_1, z_2) = H(z_1, z_2)$ and $H(z_1, z_2) > 0$ for $z_1 \neq z_2$ in S.
- (iii) If S is an annulus, then $K(z_1, z_2) \ge H(z_1, z_2)$ and the inequality is true for some pair in S.
- (iv) If S is a Riemann surface not in the above (i) \sim (iv), then $K(z_1, z_2) > H(z_1, z_2)$ for every z_1 and z_2 ($z_1 \neq z_2$) in S.

References

- S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker N. Y., (1970).
- 2. S. Kobayashi, Intrinsic distances measure and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), 357-456.
- 3. I. Kra, Automorphic forms and Kleinian groups, Reading Massachusets, Addision Wesely, (1972).
- 4. S.M. Kim, Harmonic pseudometric and the product property of pseudometrics, Kyungpook, Math. J. 20 (1980), 239-243.
- 5. J. Lehner, Discontinuous groups and automorphic functions, Amer. Math. Soc. (1964).

Seoul National University Seoul 151, Korea