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ON ANTI-INVARIANT SUBMANIFOLDS
OF COSYMPLECTIC MANIFOLDS
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O. Introduction

A normal almost contact metric manifold is said to be cosymplectic if its
fundamental 2-form and contact form are both closed. Cosymplectic mani­
folds and their submanifolds have been studied by D. E. Blair ([1J, [2J),
G. D. Ludden ([2J, [l1J) , S. I. Goldberg ([8J), S. S. Eum ([4J, [5J, [17J).
and V-H. Ki ([9J, [17J) and others.

In the last decade, the study of anti-invariant submanifolds of Kaehlerian
and Sasakian manifolds has provided us with a great deal of new and
valuable results ([3J, [10J, [12J, [16J, [18J, etc.). However, the study of
anti-invariant submanifolds of cosymplectic manifolds is not performed yet.

The purpose of the present thesis is to study anti-invariant submanifolds
of cosymplectic manifolds and obtain some results. We classify anti-invariant
submanifolds of cosymplectic manifolds into two parts. The first part is
tangential anti-invariant submanifolds and the second part is normal anti­
invariant submanifolds.

In chapter I, we recall fundametal concepts of cosymplectic manifolds and
prepare structure equations for anti-invariant submanifolds of cosymplectic
manifolds. Lastly we obtain some propositions.

In chapter 1I, we study anti-invariant subrnanifolds, which are tangent
to the structure vector field, of cosymplectic manifolds. We obtain some
basic formulas and define 1)-umbilical submanifolds of cosymplectic manifolds.
We investigate anti-invariant submanifolds of cosymplectic manifolds of
constant curvature with respect to rjj. We also study anti-invariant subma­
nifolds with parallel f-structure in the normal bundle and anti-invariant
submanifolds of cosymplectic manifolds with vanishing cosymplectic Bochner
curvature tensor.

In chapter Ill, we study anti-invariant submanifolds, which are normal
to the structure vector field, of cosymlpectic manifolds. We obtain some
basic formulas and investigate the Ricci tensor and scalar curvature of normal
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anti-invariant submanifolds of M(k), where M(k) denotes a cosymplectic
manifold of constant «ft-holomorphic sectional curvature k. We also study
anti-invariant submanifolds with parallel f-structure and a normal anti­
invariant submanifold of a cosymplectic manifold with vanishing cosymplectic
BochIler curvature tensor.

I. Cosymplectic manifolds and submanifolds of cosympleetic
manifolds

1. Cosympleetic manifolds

Let M be a (2m+ I)-dimensional differentiable manfiold of class COO
covered by a system of coordinate neighborhoods {U;xh} in which there
are given a tensor field «ft of type (1, 1), a vector field ~h and a I-form IJh

satisfying

(1. 1) «ft/«ftih= -oi+1Jj~h, «fti~j=O,

1J.-<fJ/=O, 1Ji~i= 1,
where here and in the sequel the indices h, i,j, ... run over the range {I,
2, , 2m+ I}. Such a set of a tensor field of type (1,1), a vector field
and a I-form is called almost contact trueture and a manifold with an almost
contact structure an almost contact manifold.

If, in an almost contact manifold, there is given a Riemannian metric
gji such that

(1. 2) gts«ft/«ft/=gji-1Ji1Ji, 1Ji=gij~j,

then the manifold is called an almost contact metric manifold.
If we put «ftji=«ft/gti, we see from (1. 1) and (1.2) that «ftji is skew­

symmetric. By means of the second relationship of (1. 2), we shall write
1Jh instead of ~h in the sequeL

The almost contact structure is said" to be normal if

[«ft, «ftJ +d1J®~=O,

where [«ft, «ftJ denotes the Nijenhuis tensor formed with «ft and d the operator
of the exterior derivative.

A normal almost contact metric structure is said to be cosymplectic if the
2-form «ftji and the I-form 1Ji are both closed. It is known in [lJ that the
cosymplectic structure is characterized by

(1. 3) [7k«ft/=O and [7k1Ji=O,

where [7k denotes the operator of covariant differentiation with respect to
gji·

If we denote the curvature tensor, Ricci tensor and scalar curvature of a
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cosymplectic manifold M by Kkjjh, K jj and K respectively, then the
cosymplectic Bochner curvature tensor ([4J) is defined by

(1.4) Bkjjh= Kkjjh + (Okh-7]k7]h) L jj - (o/-7]pi)Lkj
+Lkh(gjj_7]j7];) -L}(gkj-7}k7]j) +,!>khMjj
-- f/J/M ki + Mkhf/Jjj - M/f/Jki - 2 (Mkjf/Jjh +f/JkjMjh) ,

where

(1. 5)

(1. 6)

1
L jj= - 2(m+2) {Kjj +L(gjj-7}j7]j)} , L/=Ljtgth,

M jj = -Ljtf/J/, M/=Mjtgth, L=Ljigjj= 4(:~I) K.

We recall here the following lemma.

LEMMA. ([7J). The cosympletic Bochner curvature tensor in a cosymplectic
manifold M satisfies the following equation

V'tBkj/= -2m [V'kLjj-V'jLkj

+ 8(m+ I~ (m+2) (f/J/9jj-t/>/9kj-2f/JNkj)V'tK ].

In a cosymplectic manifold M, we call a sectional curvature

k=- g(K(tj>X,X)f/JX, X)
g(X, X)g(tj>X, tj>X)

determined by two orthogonal vectors X and tj>X the f/J-holomorphic sectional
curvature with respect to the vector X of M. If the fjJ-holomorphic sectional
curvature is always constant with respect to any vector at every point of
the manifold M, then we call the manifold M a manifold of constant fjJ­
holomorphic sectional curvature. If a cosymplectic manifold has a constant 9­
holomorphic sectional curvature k at every point, then the components of
the curvature tensor of the manifold are of the form ([5J, [l1J)

k
(1. 7) K Ukl = - T(gikgjZ- gjkgi/+cPik9jz-cPjkcPi/+29uifJkz

--7]i7}kgjZ+7]j7}kgiZ +7]i7]Zgjk -7]PJzgjk)'

A cosymplectic manifold M is said to be of constant curvature space with
respect to rjj if the curvature tensor is of the form

(1. 8) Kkj/=c(rjiTkt-rkjr/) ,
where Tkj=gkj-7}k7]j ([6J).

2. Submanifolds of cosymplectic manifolds

Let M be a (2m+ I)-dimensional cosymplectic manifold with structure
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tensors (r/J}, gjb r;h), and let N be an n-dimensional Riemanian manifold
covered by a system of coordinate neighborhoods {V; ya} and isometrically
immersed in M by the immersion i : N~M. Suppose that the local expression
of the submanifold N in M is

~D ~=~(~.

Here and in the sequel the indices a, b, c, d, e run over the range {I, 2, 3, ...,
n}.

Differentiate (2. 1) and put

(2.2) Bbh=Obxh, Ob=O;oyb,

which is, for each fixed index b, a local vector field tangent to N. These local
vector fields Bbh span the tangent plane of N at each point of N. Denote
by Cxh 2m+ I-n mutually orthogonal unit normals to N. The indices x,
y, z run over the range {n+ 1, , 2m+ I}. If we denote by gbe the metric
tensor on N induced from that of M, then we have gbe=gjiBbiB/'

The transforms of Bi by r/J can be expressed as linear combinations of
Bah and Cxh, that is,

(2.3) r/JihB/=leaBah-fexCxh,

where lea is a tensor field of type (1,1) defined on N, leX a I-form for
each fixed index x. The transforms r/JC/ of C:/ by r/J can be expressed as

(2.4) r/JiCxi=lxaBah+qxYCl,

where fxe is vector field of Nand qxY is a function for each fixed x and y.

If we denote by l7e the operator of the van der Waerden-Bortolotti

covariant differentiation with respect to the Christoffel symbols {bac} formed

with gbe, we have the equations of Gauss and Weingarten for N

(2.5) f7eBbh= hebxCxh,
(2.6) f7eCxh= -hexaBi

respectively, where hebx is the second fundamental tensor with respect to
the normal Ci and heax=hebYgbagyX' gyx being the metric tensor of the
normal bundle of N given by gyx=gjiC/Cxi=Oyx.

The structure equations of the submanifold N are given by

(2.7) Rabed=KijkzBjBbiB/Bi+hadxhbex-hbdxhaex,
(2.8) KiilBbiBiB}CxZ=f7bheax-l7ehbax,
(2.9) K··kzBbiB iC kCYz=Rb Y- (hb Yh e -h Yhbe )ZJ C x ex e c x ce :x,

where R abed is the curvature tensor of Nand Rdeyx is the curvature tensor
of the connection induced in the normal bundle. The above equations
(2. 7), (2. 8) and (2. 9) are the equations of Gauss, Codazzi and Ricci
respectively.
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fabYja+ fxbYjx=O,
faxYja - qzxYjz=O,

fcd+fdc=O,
qXy+qyx=O,

(2.15)
(2.16)
(2.17)
(2.18)

The structure vector field Yjh can be written as

(2.10) Yjh = YjaBah +YjxCxh.

Applying the operator 9 to both sides of (2.3), (2.4) and (2.10), using
(1. 1), (1. 2) and comparing tangential parts and normal parts of both sides
respectively, we obtain

(2.11) f/fab = -ocb+Yjcr;b+fcxfxb,
(2.12) f/faY= - fcXqxY-YjcYjY,

(2. 13) qxYq/= -oxz+YjxYjz+fxafaz,
(2. 14) qxYf/=YjxYjL- fxafab,

where qXy=qxZgzy and fab=faCgct.

Transvecting Yjh to both sides of (2. 3), (2.4) and (2. 10), using (1. 1),
(1. 2) and comparing tangential parts and normal parts of both sides
respectively, we find

fcy= fyco
YjaYja+Yj xYjx = 1,

(2. 21)
(2.22)

(2. 11) with respect to c and b, we have

- fabf ab = -n+YjcYjc+faxfxa.

with respect to x and z in equation (2. 13), we obtain

faxfxa=2m+1-n-YjxYjx-qxyqxy.

(2. 24) into (2.23), we obtain

fabf ab = qxyqxy - 2 (m - n) -1 + rJxrJx -Yjc7jc.

the following two propositions with the aid of (2.22) and

Contracting

(2. 24)

Substituting

(2. 25)

Thus we have
(2.25)

(2.19) fcaYja- fcxYjx=O,

(2.20) qxYYjy+fxaYja=O,

where fcy=f/gz y and fyc=f/gac'
A submanifold N immersed in a cosymplectic manifold M is said to be

anti-invariant in M if 9(Tx(N»cTx (N)1. for each point x in N, where
Tx(N) and Tx(N) 1- denote the tangent and normal space of N at x
respectively. In an anti-invariant submanifold N we have f/=O because of
(2.3).

Contracting

(2.23)

PROPOSITION 1 ([16J). Let M be a cosymplectic manifold of dimension 2m
+1 and let N be an (m+l)-dimensional anti-invariant submanifold of M.
Then the structure vector field rJh is tangent to Nand qXY=O.

PROPOSITION 2. Let 1'.1 be a cosymplectic manifold of dimension 2m+ 1 and

let N be an m-dimensional anti-invariant submanifold of 1\1. Then we have

qxyqXY= 2YjcYjc.

1'1t!oreover, if the structure vector field Yjh is normal to N, them we have
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Suppose that N is a submanifold of the cosymplectic manifold M of
constant (j9-holomorphic sectional curvature k. Then we have from (1. 7)

(2.26) KmP/BiBbkB}
k= -4 (fzbfQC - fufab+ 2 fzaibe -1Jz1Jbgae+1Jz1Jegab)'

If we apply the operator 17b of the covariant differentiation to (2. 3),
(2.4) and (2. 10) respectively and take account of (1. 3), (2. 5) and (2. 6),
then we obtain

(2.27)
(2.29)
(2.31)

17bfea=hbezfza-fcxhbaz,
17bqz"'=hbez f/- fzehbe"',

17b1Jz= -1Jehebx.

(2.28)
(2.30)

17bfeY= -hbeZqzY+f/hbl,
17b1Ja=hbaz1Jz,

11. Tangential anti-invariant submanifolds of cosymplectic
manifolds

In this chapter we investigate antI-mvariant submanifolds, which are
tangent to the structure vector field, of cosymplectic manifolds. We call
such a submanifold tangential anti-invariant submanifold.

1. Basic formulas of tangential anti-invariant submanifolds

Let N be a n-dimensional tangential anti-invariant submanifold of a
(2m +1) -dimensional cosymplectic manifold M (n~m+1). Then we have

fea=O and 1Jx=O.
Therefore the equations of chapter I which contain fea or 1Jz can be rewritten
as

(1. 1) 1Jh=1JaBah,
(1. 3) f/;qxY=O,
(1. 5) faz1Ja=o,
(1. 7) fazfza=n-1,
(1. 9) 1Jehebx=O,

If we transvect the equation (1. 4)
then we have

(1. 2) -Oeb+1Je1Jb+fexfxb=O,
(1.4) qxYqy"'= -ox"'+fxafa"',

(1. 6) 1Ja1Ja= 1,
(1. 8) qxyqXY=2(m-n) +2,
(1. 10) 17b1Ja=O.

with qwX and take account of (1. 3),

qwXqxYq/+qw"'=O.

If qxY does not vanish on N, then it defines an f-structure in the normal
bundle ([14J). If 17bqx'"= 0, then the f-structure in the normal bundle IS
said to be parallel.

We now consider the system of partial differential equations m a



On anti-invariant submanifolds of cosymplectic manifolds 15

cosymplectic manifold M of constant curvature c with respect to rjj

(1.11) fi'jXj=qjj+XjXj, Xjr/=O

for unknown vector Xj'

If we differentiate (1. 11) coveriantly and take account of (1. 3) of chapter
I, then we have

fi'kfi'jXj= (qkj+ XkXj ) X j+ (qkj+ XkXj) Xj,
which implies

fi'kfi'jX j- fi'jfi'kXj=C(njXj -rjjXk) =C(rkir}-rjjnh) Xh.

The necessary and sufficient condition for the system (1. 11) to be
completely integrable is

fi'kfi'jXj - fi'ifi'kXj= - KkjjhX h•

Since the curvature tensor of M has the form of (1. 8) of chapter I, this
condition is satisfied. Hence the system is completely integrable.

Let us consider a tangential anti-invariant submanifold N of M such that
N has a solution vector Xj of (1. 11) as a normal vector, that is, Xj=AC*j
for a function A. Transvecting (1. 11) with BbiB/, we obtain

(1. 12) BbjBcjfi'jXj=c (gbc -1Jb1Jc).

If we substitute Xj=AC*j into (1.12), then we have ABbjfi'cC*j=C(gbc-1Jb1Jc)'
Hence we have hcb*=a*(gbc-1Jb1Jc) for a certain index *, where a* denotes
-clA.

If the second fundamental tensor habx of a tangential anti-invariant
submanifold of a cosymplectic manifold is of the form

(1. 13) hbcx=ax (gbc-1Jb1JC>

for each index x, then we call such a submanifold 1J-umbilical submanifold.
Here a X denotes a function on N for each index x.

2. Tangential anti-invariant submanifolds of constant curvature
spaces with respect to rjj

In this section we consider a 1J-umbilical submanifold N of a constant
curvature space M(c) with respect to rjj. The equations (2.7) and (1. 8)
of chapter I and (1. 13) imply

(2. 1) Rabcd= (c+a) (gbcgad- gacgbd+1Ja1Jcgbd

-1Jb1Jcgad -1Ja1Jdgbc+1Jb1Jdgac),

where a denotes aXax.
Transvecting the equation (2.1) with gad, we have

(2.2) Rbc = (n-2) (c+a) (gbc-1Jb1Jc)'

Transvecting the equation (2. 2) with gbc, we have
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then we have

(2.3) R= (n-l) (n-2) (c+a).

From (2. 8) and (1. 8) of chapter I we have

(2.4) Vahbcz-Vbha/;=O.

If we differentiate (1. 13) covariantly along N,

Vahbcz=Vaaz (gbc-1]b1]c) ,(2.5)

from which we find

(2.6) Vaaz (gbc-1]b1]c) - (Vbaz) (gac-1]a1]c) =0.

Transvecting (2.6) with gbc, we obtain

(2.7) (n-2) Vaaz+1]a1]eVeaz=O.

We now assume that n>2. If we transvect (2.7) with 1]a, we have
1]eVeaz=O. Substituting 1]eV pZ=O into (2.7), we find

(2.8) Vaaz=O,

from which we have

(2.9) Vaa=O.

From (1. 1), (2. 2) and (2. 3) we have

(2.10) VaRbc=O, VaR=O.

From (1. 10), (2. 1) and (2. 9), we obtain

VeRabcd=O,

which means that the submanifold N is locally symmetric. Thus we have
the following theorem.

THEOREM 3. Let N be an n-dimensional tangential anti-invariant submanifold
of cosymplectic manifold M of constant curvature with respect to tji (n>2).
If N is a 1]-umbilical submanifold of M, then N is locally symmetric.

The Weyl conformal curvature tensor field of N is the tensor field C of
type (1, 3) defined by

(2. 11) Cabcd= R abc I + n':'2 (Racobd- Rbcoi +g acRbd - gbcRad)

(n-l~(n-2) (gaeObd-gbcOa
d
).

Moreover, we put

(2.12)

It is well-known that a necessary and sufficient condition for a Riemannian
manifold to be conformally flat is that Cabcd=O for n>3 and Cabc=O for
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n=3.
Now let us compute the Weyl conformal curvature tensor of a 7]-umbilical

submanifold N of the constant curvature space with respect to rji'

Substituting (2. 1), (2. 2) and (2. 3) into the equation (2. 11), we obtain
Cabed=O provided that n>3. For n=3 we have Cabe=O by the help of (2.
10) and (2. 12). Thus we have the following

THEOREM 4. If N is an n-dimensional 7]-umbilical submanifold of a constant
curvature space M with respect to rji (n~3), then N is conformally flat.

3. Tangential anti-invariant submanifolds with parallel (-structure
in the normal bundle

In section 1 we have shown that qx' defines an f-structure in the normal
bundle of N. In this section Vl.lfi! investigate tangential anti-invariant
submanifold with parallel f-structure in the normal bundle.

Let N be an n-dimensional tangential anti-invariant submanifold of a
(2m+ I)-dimensional cosymplectic manifold and suppose that the f-structure
qx'in the normal bundle Is parallel, that is, V'bqx'=O. Then by the equation
(2. 29) of chapter I we have

(3.1) h(/xf/-fxekbe'=O.

Transvecting the equation (3. 1) with fex, we have

hbexfexfe'-fexfxehbe'=O.

If we substitute (1. 2) into this equation and take account of (1.9), then
we have

(3.2) hbe'=hbexfexfe'.

From (3. 2), (1. 2) and (1. 9), we obtain

(3.3) ha/hbex=k/,Jrfexk/,fe'fgx
=kae"Jr kb

g
,fe'(geg-1}e1}g)

=haezkebyfrfe'·

The equation (3. 3) implies

(3.4) ha/kbex-kbxhae:r;= (kaezkeb,-hbezhea,)fd"'!e'.

If the submanifold N has commutative second fundamental tensors, that is,

(3.5) kaexheb,=kae,kebx,

then the equation (3. 4) implies

(3.6) ka/kbez-kbtf'Ckaex=O.

From the last equation and the equation (2. 7) of chapter I we obtain the
following
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PROPOSITION 5. Let N be a tangential anti-invariant submanifold of a
cosymplectic manifold M. If N has the parallel f-structure qxY in the normal
bundle and has the commutative second fundamental tensors, then we have

R abcd= KiikZBaiBiB/Bi.

Let N be an n-dimensional tangential anti-invariant submanifold of a
(2m+1)-dimensional cosymplectic manifold M(k) of constant qS-holomorphic
sectional curvature k. Then the equations (1. 7) and (2. 7) of chapter I
imply

(3.7) R abcd= - ~ k(gacgbd-gbcgad-1}a1}cgbd+1}b1}cgad

+1}a1}dgbc-1}b1}dgac) +ha?hbcx-hbrhacx

where we have used qSiiBaiBbi=O.
Suppose that N has the parallel f-structure qxY in the normal bundle and

has the commutative second fundamenf~l tensors. Then (3. 6) and (3. 7)
imply

(3.8) R abcd= - ~ (gacgbd- gbcgad-1}a1}cgbd+1}b1}cgad+1}a1}dgbc-1}b1}dgac) ,

from which we have

(3.9)

and
k(3.10) R=4(n-1) (n-2).

Substituting (3.8), (3.9) and (3.10) into the equation (2.11), we obtain
Cabcd=O and Cabc=O by virtue of (1.10). Thus we have the following

THEOREM 6. Let N be an n-dimensional tangential anti-invariant submanifold
of a cosymplectic manifold M(k) of constant qS-holomorphic sectional curvature
k. If the f-structure is parallel in the normal bundle and the second
fundamental tensors are commutative, then N is conformally flat.

On the other hand, since 1}a is parallel unit vector and N is conformally
flat (or the curvature tensor of N has the form (3. 8)) we have, by a theorem
of K.Yano ([13J),

THEOREM 7. Let N be an (n+ I)-dimensional tangential anti-invariant
submanifold of a (2m+1)-dimensional cosymplectic manifold M(k) of constant
ifrholomorphic sectional curvature k.. If the f-structure in the normal bundle is
parallel and the second fundamental tensors are commutative, then N is locally
a Riemannian direct product Nn X RI, where Ri is a straight line and Nn is
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d · . I R" f kan n- zmenswna zemannzan space 0 constant curvature 4'

1£ N is an (m+I)-dimensional anti-invariant submanifold of a (2m+I)­
dimensional cosymplectic manifold M, then N is a tangential submanifold
of M(d. proposition 1) and qxY=O. Therefore we also have the equation
(3.1). From the similar arguments of theorem 7 we have the following

THEOREM 8. Let N be an (m+ I)-dimensional anti-invariant submanifold of
a (2m+I)-dimensional cosymplectic manifold M(k). If the second fundamental
tensors are commutative, then N is locally a Riemannian direct product NmX
RI, where RI is a straight line and Nm is an m-dimensional Riemannian space

k
of constant curvature 4'

\Ve now consider the normal connection of an n-dimensional tangential
anti-invariant submanifold of a cosymplectic manifold M(k). Substituting
(1. 7) of chapter I into the equation of Ricci (chapter I. (2.9», we have

(3.11)

where we have used (1. 1) and (1. 2).

""'Ve assume that the normal connection of N is flat, that IS, Rabxy=O.

Then we have

k(3.12) haeyhbex-hbeyhaex=4(faxiby-ibxfay).

If the f-structure is parallel in the normal bundle, then we obtain from
(3. 4), (3. 12) and (1. 2) that

(3.13) ha/hbcx-hbrhacx
k= - 4 (gadgbc- gacgbd-1}b1}cgad+1}a1}cgbd

+ 1}b1}dgac -1}a1}dgbc),

which and (3.7) imply Rabcd=O. Thus we have

THEOREM 9. Let N be an n-dimensional tangential anti-invariant submanifold
of a (2m+ I)-dimensional cosymplectic manifold M(k). If the f-structure in
the normal bundle is parallel and the normal connection is flat, then N is
locally fiat.

For (m+ I)-dimensional submanifold we have the following

THEOREM 10. Let N be an (m+ I)-dimensional anti-invariant submanifold
of a (2m+I)-dimensional cosymplectic manifold M(k). If the connection in



20 Un Kyu Kim

the normal bundle is flat, then N is locally fiat.

4. Tangential anti-invariant submanifolds of cosymplectic manifolds
with vanishing cosymplectic Bochner curvature tensor

Suppose that M is a (2m+1) -dimensional cosymplectic manifold with
vanishing cosymplectic Bochner curvature tesor. Then (1. 4) and lemma of
chapter I imply

(4.1) K kjih + (gkh-1}kT}h) L ji - (gjh-T}j1}h) L ki + L kh (gji-T)j1ji)
- L jh (gki-T)kT}i) +r[mMji-rpjhMki+ Mkhrpji- Mjhrpki
-2 (Mkirpih+rpkjMih) =0

and

(4.2) V'kLii- V'jLki + 8(m+ 1~ (m+2) (rplrpji-rp/rpki

- 2rp/rpki) V'tK =(\

Let N be an (n+ I)-dimensional tangential anti-invariant submanifold of
M with vanishing cosymplectic Bochner curvature tensor. Transvecting (4.1)
with B/BbiB/Bdh, we find

(4.3) Rabcd-hadxhbcx+hbdxha/'+ (gad-T)a7jd) LjiBiB/
- (gbd-T)bT}d) LkiB/B/+LkhB/Bdh(gbc-T)bT)c)
-LihBbiBdh(gac-T)aT)J =0,

where we have used (2.7) of chapter I, rpiiBbiBai=O and (1. 1).
We assume that the submanifold is T)-umbilical, that is,

hbcx=ax(gbc -T)bT)c)'
Then (4. 3) can be rewritten by

(4.4) Rabcd-axax(gadgbc- gbdgac- gadT)bT)c-T)aT)dgbc+ gbdT}aT)c+T}bWgac)
+ (gad-T)aT)d) LjiBiBci- (gbd-T)bT}d) LkiBa"Bci
+ LkhBa"Bdh(gbc-T)bT)c) -LjhBbiBi(gac-T}aT}c) =0.

Since the unit vector field if is parallel with respect to the connection of
N, N is locally a direct product of an N n and NI generated by T}a and
moreover N n is a totally geodesic hypersurface in N([IO]). We now
suppose that the local expression of the hypersurface Nn in N is

(4.5) ya=ya(zs),

where z' are local coordinates in Nn. The indices. s, t, u, v run over the
range {1,2, , n}. Differentiate (4. 5) and put

(4.6) B.a=o.ya, 0s=%z',

which is, for each fixed index s, a local vector field tangent to N n
• These

local vector fields B/ span the tangent plane of Nn at each point of Nn
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and are orthogonal to 1)a because of (1. 10).
Transvecting (4.4) with B/B/B,/Bvd, we find

(4.7) R*st"v-axax(gsvgt,,-gtvgs,,) +gsvLjiB/B"i
- gtvLkiB/'B"i+ LkhB/'Bvhgt"
-LjhB/Bvhgs"=O,

where R*st"v is the curvature tensor of N n
, gsv the induced metric on N"

from gab and Bsh=BsaBah.
If we put

(4.8)

then (4. 7) can be rewritten as

(4.9) R*st"v+gsvCI,,-gtvCs,,+Csvgl,,-Ctvgs,,=O.

Transvecting (4. 9) with gSV, we obtain

(4.10) R*t,,+ (n-2) Ct,,+C;gt" =0,
where R*t" is the Ricci tensor of Nn.

Transvecting (4. 10) with gt", we have

(4.11) C;= - 2(n~ 1) R*,

where R* denotes the scalar curvature of Nn. Therefore the equations (4. 10)
and (4. 11) imply

(4 12) C - 1 R* + 1 R*. t,,- - n-2 I" 2(n-I) (n-2) gt",

which and (4.9) show that the Weyl conformal curvature tensor C*SI"V of
N n vanishes identically (4:£n:£m). Thus we have

THEOREM 11. Let N be an (n+I)-dimensional (n;;:;:;4) 1)-umbilical, tangential
anti-invariant submanifold of a (2m +1) -dimensional cosymplectic manifold M
with vanishing cosympleetic Bochner curvature tensor. Then N is locally a
product of a conformally flat Riemannian manifold N n and a I-dimensional
space NI.

We shall now seek out another condition in order to obtain the same
conclusion as theorem 11. Let N be an (n+I)-dimensional (n~4) tangential
anti-invariant submanifold of a (2m+ 1) -dimensional cosymplectic manifold
M with vanishing cosymplectic Bochner curvature tensor. If the second
fundamental tensors of N are commutative and the f-structure in the normal
bundle is parallel, then from (3.6) and (4.3) we have

(4.13) R abcd + (gad-1)a1)d) LjiB/B/- (gbd-1)b1Jd) LkiB}B/
+LkhB}Bi(gbc-1)b1)J -LjhBbjBi(gac-1)a1)c) =0.
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Transvecting

(4.14)
where
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(4.13) with BsaB/B,/Bvd, we find

R*stuv+gsvDtu-gtvDsu+Dsvgtu-Dtvgsu=O, .

Dtu=LjiBiBui.

Thus we have the following theorem by similar arguments of (4. 10), (4.
11) and (4.12).

THEOREM 12. Let N be an (n + I)-dimensional (n~4) anti-invariant
tangential submanifold of a (2m+l)-dimensional cosymplectic manifold M
with vanishing cosymplectic Bochner curvature tensor. If the f-structure in the
norml bundle is parallel and the second fundamental tensors of N are commut­
ative, then N is locally a product of a conformally flat Riemannian manifold
Nn and I-dimensional space NI.

Since qxY=O for n=m, i. e., dim N=m+l, we have (4.13). Hence we
have the following

THEOREM 13. Let N be an (m+l)-dimensional (m~4) anti-invariant
submanifold of a (2m+ I)-dimensional cosymplectic manifold M with vanishing
cosymplectic Bochner curvature tensor. If the second fundamental tensors of N
are commutative, then N is locally a product of a conformally flat Rimannian
manifold Nm and I-diemensional space NI

In the sequel, we study the case that dim N=4, i. e. n=3.

THEOREM 14. Let N be a 4-dimensional tangential anti-invariant submani­
fold of a (2m+ I)-dimensional cosymplectic manifold with vanishing cosymplectic
Bochner curvature tensor. If N is TJ-umbilical, then N is locally a product of
a conformally flat Riemannian manifold N3 and a I-dimensional space NI.

Proof. Since M has vanshing cosymplectic Bochn~r curvature tensor, we
have, from (4.2),

(4.15) (f7kLji-f7jLki)BiBiB/=O.

If we put Lbc=LjiBbjB/, then we obtain

f7aLbc= BakBiBcif7kLji+Ljiax(gab-TJaTJb) CxjBci
+ LjiBi (gac-TJaTJc)axCxi,

from which and (4.15) we find

(4.16) f7aLbc- f7bL ac+ La (gbc-TJbTJc) - Lb(gac-TJaTJc) =0,

where . Lb=LjiBbjCxiax.
If we put Ltu=LbcB/Buc, then we have

f7 sLtu = BsaB/Bucf7aLbc.



aZf7sa z+ Ls=O

(4. 12) and the second Bianchi identity. Hence we
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The last equation and (4. 16) imply

(4. 17) f7sL tu - f7t L su+ Lsgtu - Ltgsu=O,

where Lt=LbBl.

Since Ltu=Ctu + ~ azaZgtu, we obtain

(4.18) f7sL tu = f7sCtu+gtu(f7saz) a Z.

Substituting (4.18) into (4.17), we find

(4.19) f7sC tu -f7Psu+ (az f7sa z+Ls)gtu- (az f7ta z+ Lt) gsu=O.

Transvecting (4. 19) with gtu, we have

(4.20)

by the help of (4.11),
have

(4.21) f7 sCtu - f7tCsu =O,

from which and (4.12) we find C*stu=O. This completes the proof.
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Ill. Normal anti-invariant submanifolds of cosymplectic manifolds

In this chapter we investigate anti-invariant submanifolds, which are
normal to the structure vector field, of cosymplectic manifolds. We call
such a submanifold normal anti-invariant submanifold.

1. Basic formulas of normal anti-invariant submanifolds

Let N be an n-dimensional normal anti-invariant submanifold of a (2m+
I)-dimensional cosymplectic manifold M (n;;2m). Then we have

!/=O and 1ja=O.
Therefore the equations of chapter I which contain!/ and 1ja can be

rewritten as

(1. 1) 1jh=ifCzh,

(1. 3) !CZqzY=O,

(1. 5) !zbV=O, qzY1jy=O,
(1. 7) !az!za=n,

(1.9) hbazV=O,
(1. 11) hcbz!za=!czhbaz

If we transvect the equation
and (1. 5), then we have

(1. 2)
(1. 4)
(1. 6)
(1. 8)
(1. 10)
(1. 12)

(1. 4) ,vith qwZ

!cz!zb=O/,
qzYq/= -OZZ+1jz1jz+!za!az,

1jzif=l,
qzyqZY=2(m-n),

f7b1jz=O,
f71:!cY= -hbcZqzY.

and take account of (1. 3)

qwZqzYqyZ+qwZ=O.

If the dimension of N is less than m, then, from (1. 8), qzY does not
vanish and hence qzY defines an i-structure in the normal bundle of N. If
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N is an m-dimensional normal anti-invariant submanifold of a (2m+ 1)­
dimensional cosymplectic manifold M, then q:;/ vanishes identically.

2. Normal anti-invariant submanifolds of M(k)

Let N be an n-dimensional normal anti-invariant submanifold of a (2m
+1)-dimensional cosymplectic manifold M(k) of constant 95-holomorphic
sectional curvature k. .Then the equation (2. 7) of Gauss and (1. 7) of
chapter I imply

k
(2.1) R abcd = -tr(gacgbd-gbcgad) +ha/hbcx-hbdxhacz,

where we have used 95ijBiB/=O and rl'Bah=O.
If N is totally geodesic, then we have

kR abcd= - tr (gacgbd - gbcgad) ,

which shows that N is of constant curvature ~

Transvecting (2.1) with gab, we obtain

k
(2.2) Rbc=tr(n-l)gbc+ha=hbcx-hbexhecx,

from which we find
k(2.3) R=trn(n-l) +haaxhbbx-hbexhbex.

Moreover, if the submanifold N is minimal, then (2. 2) and (2. 3) imply

k(2.4) Rbc=tr (n-l) gbc-hbexhecx

and
k(2.5) R=trn(n-l) -hbexhbex.

From the equations (2. 1), (2. 4) and (2. 5) we obtain the following
proposition.

PROPOSITION 15. Let N be an n-dimensional normal anti-invariant minimal
submanifold of a cosymplectic manifold M(k) of constant 95-holomorphic sec­
tional curvature k. Then N is totally geodesic if and only if N satisfies one
of the following conditions

(a) N is of constant curvature ~'

k
(b) Rbc=tr(n-l)gbc,

k(c) R=trn(n-l).



On anti-invariant submanifolds of cosymplectic manifolds 25

REMARK. Proposition 15 corresponds to the case of anti-invariant
submanifold of a complex space form ([3J).

3. Normal anti-invariant submanifolds with parallel I-structure in
the normal bundle

In section 1 we have shown that qxY defines an f-structure in the normal
bundle. In this section we investigate normal anti-invariant submanifolds
with parallel f-structure in the normal bundle.

Let N be an n-dimensional normal anti-invariant submanifold of a (2m+
1) -dimensional cosymplectic manifold M. Suppose that the f-structure qxY

is parallel in the normal bundle of N, that is, I7bqxY=O. Then the equation
(2. 29) of chaptet I implies

(3. 1) hbexf/ - fxehebz=0.

Transvecting (3.1) with fex and taking account of (1.2), we obtain

(3.2) hbeY=hbe:rfeXfeY'

From (3. 2) and (1. 2) we have

(3.3) ha,rhbex=hae.fazfeXhbKyfeYfgx=haezhebyfdzfeY.

From (3. 3) we obtain the following lemma.

LEMMA 16. Let N be a normal anti-invariant submanifold of a cosymplectic
manifold. If the f-structure qxY is parallel in the normal bundle, then we
have

(3.4) ha,rhbex-hb,rhaex
= (haezhebw-hbe",heaw)fdzfew.

We shall now prove the following

THEOREM 17. Let N be an n-dimensional normal anti-invariant submanifold
of a (2m+ I)-dimensional cosymplectic manifold M(k) and let the f-structure
qxY is parallel in the normal bundle of N. Then N is of constant curvature

1if and only if the second fundamental tensors of N are commutative.

Proof. Suppose that N is of constant curvature :. Then the equation

(2. 1) implies
ha/hbex - hbdxhacx=0,

from which and (3.4) we obtain

(3.5) (haezhebw-hbe",heaw)fdzfcw=O.

Transvecting (3. 5) with fdx' we have

(3.6) (haezhebw-hbezheaw) (qxYq/+oxz-nxnz)fcw=O
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by the help of (1. 4).
On the other hand, we have, by the help of (3.2),

hbcYqyz=hbexf/feYqyz,

which and (1. 3) imply

(3. 7) hbcYqyz=O.

From (3. 7) and (1. 9), (3. 6) can be reduced to

(3.8) (hae:chebw-hbe:cheaw)fcw=O.

Transvecting (3.8) with fCy and by the similar arguments, we obtain

haexhebY - hbexheay= 0,
which shows that' the second fundamental tensors of N are commutative.

Conversely, suppose that the second fundamental tensors of N are
commutative. Then from lemma 16 we have

ha,rhbc:c - hbt1xhac:c=O.

Substituting the last equation into (2. 1), we have

k
R abcd = - 4 (gacgbd - gbcgad),

which shows that the submanifold N is of constant curvature ~. This

completes the proof of the theorem.
Let us consider an m-dimensional normal anti-invariant submanifold:..oCa

(2m+ I)-dimensional cosymplectic manifold M. Then qxY=O because of
(1.8). In this case we also have the equations (3.1) and (3.4). Hence the
theorem 17 is satisfied without the assumption with respect to f-structure.
Thus we have

THEOREM 18. Let N be an m-dimensional normal anti-inveriant submanifold
of a (2m+1)-dimensional cosymplectic manifold M(k). Then N is of constant

curvature ~ if and only if second fundamental tensors of N are commutative.

We' now consider the normal connection of an n-dimensional normal anti­
invariant submanifold of a cosymplectic manifold M(k) of dimension (2m+
1). Substituting (1. 7) of chapter I into the equation of Ricci (chapter 1.
(2. 9)), we obtain

k
(3.9) Rbc:cy=hbeyh/:c-hceyhbex-4 (hxfcy- fc:cfbY) ,

where we have used (1. 1) and (1. 2).
We assume that the normal connection of N IS flat, that IS, Rab:cy=O

Then we obtain
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k
(3. 10) hbe,hc'x-hce,hbex=4 (ibxfc,- fcxib,).

If the f-structure is parallel in the normal bundle, then (3.4) and (3. 10)
imply

k
hacfhbcx-hbdxhacx=4 (gacgbd- gbcgad) ,

from which and (2. 1) we get Rabcd=O. Thus we have

THEOREM 19. Let N be an n-dimensional normal anti-invariant submanifold
of M(k) with parallel f-structure in the normal bundle. If the connection
in the normal bundle is flat, then N is locally flat.

4. A normal anti-invariant submanifold of a cosymplectic manifold
with vanishing cosymplectic Bochner curvature tensor

As a theorem giving a relation between the Weyl conformal curvature
tensor and the contact Bochner curvature tensor, K. Yano ([I5J) proved
the following

THEOREM. Let N be an n-dimensional (n;S 3) totally umbilical, anti-invariant
submanifold normal to the structure vector field of a (2m +1) -dimensional
Sasakian manifold M with vanishing contact Bochner curvature tensor. Then
N is conformally flat.

In this section we investigate a normal antI-Invariant submanifold of a
cosymplectic manifold with vanishing cosymplectic Bochner curvature tensor
and obtain a theorem corresponding to the above theorem.

Let N be an n-dimensional normal anti-invariant submanifold of a (2m+
I)-dimensional cosymplectic manifold M with vanishing cosymplectic Bochner
curvature tensor. Then from (1. 4) and lemma of chapter I we have
respectively

(4.1) K kjih + (gkh-7}k7}h)Lji - (gjh-7}j7}h)Lki
+Lkh (gji-7}j7};) -Ljh (gki-7}k7}i) +cPkhMji

- cPjhMki+ M..h9ji - Mjhr/ii - 2 (MkjifJih +cPkjMih ) =0,

(4.2) f7k L ji-Pj L ki + 8(m+I5 (m+2) (9HJji-cP/9ki- 2cPkjcjJ/)f7tK =O.

We now assume that the submanifold N is totally umbilical, that is, hbcx

=aXgbc' Transvecting (4.1) with B}BbiB/Bdh, we find

(4.3) R abcd - (gadgbc- gbdgac)axax+ gadLjiBbjB/
- gbdLkiBakBci+ LkhB}Bdhgbc- LjhBbiBdhgac=O
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by virtue of (2.7) of chapter I, (1.1) and ljJjiB/Bbi=O.
If we put

C
.. 1

bc=LjiBbJB/-2axaXgbe,

then (4. 3) can be rewritten as

(4. 4) Rabcd+ gaiJCbe - gbdCac+Ca(Jgbc - Cbdgac=O.

Transvecting (4.4) with gab, we obtain

1 1
(4.5) Cbc=- n-2 R bc+ 2(n-I) (n-2) Rgbe.

Therefore (4.4) and (4. 5) show that the Weyl conformal curvature tensor
of N vanishes identically.

Transvecting (4.2) with BakBbiB/, we obtain

(4. 6) ('(7kLii - f7jLki)B}BbiB/=0

by virtue of ljJjiBbiBei=O.
If we put Lbc=LjiBbiB/ and Lc=LjiB/Ciax,

then we have
fTaLbe= (fTkLji) B}BiB/+ Legab+Lbgae>

from which and (4.6) we have

(4.7) fTaLbc-fTbLac+Lagbe-Lbgac=O.

Since Lbe=Cbe+ ~ axaXgbc we :find

(4.8) fTaLbe=fTaCbc+gbc(fTaax)ax.
Substituting (4.8) into (4.7), we :find
(4. 9) fTaCbe - fTbCae+ (axf7aax+La) gbc - (axf7bax+ L b) gac=O.

Transvecting (4.9) with gbc, we have
L a+axf7aa x=O

by the help of (4.5) and f7bRab= ~ f7aR Therefore (4. 9) can be rewritten

as
1

f7aRbe - fTbRae 2 (n -1) (gbcf7aR - gaefTbR ) =0.

from which we :find Cabc=O. Thus we have the folowing

THEOREM 20. Let N be an n-dimensional normal totally umbilical anti­
invariant submanifold of a (2m+ I)-dimensional cosymplectic manifold M with
vanishing cosymplectic Bochner curvature tensor (3~n~m). Then N is
conformally fiat.
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