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ON ANTI-INVARIANT SUBMANIFOLDS
OF COSYMPLECTIC MANIFOLDS

Un Kyu Kim

0. Introduction

A normal almost contact metric manifold is said to be cosymplectic if its
fundamental 2-form and contact form are both closed. Cosymplectic mani-
folds and their submanifolds have been studied by D.E. Blair ([1], [2]),
G.D. Ludden ([2],[11]), S.I. Goldberg ([8]), S.S. Eum ([4], [5], [17]).
and U-H. Ki ([9],[17]) and others.

In the last decade, the study of anti-invariant submanifolds of Kaehlerian
and Sasakian manifolds has provided us with a great deal of new and
valuable results ([3], [107, [12], [16], [18], etc.). However, the study of
anti-invariant submanifolds of cosymplectic manifolds is not performed yet.

The purpose of the present thesis is to study anti-invariant submanifolds
of cosymplectic manifolds and obtain some results. We classify anti-invariant
submanifolds of cosymplectic manifolds into two parts. The first part is
tangential anti-invariant submanifolds and the second part is normal anti-
invariant submanifolds.

In chapter I, we recall fundametal concepts of cosymplectic manifolds and
prepare structure equations for anti-invariant submanifolds of cosymplectic
manifolds. Lastly we obtain some propositions.

In chapter II, we study anti-invariant submanifolds, which are tangent
to the structure vector field, of cosymplectic manifolds. We obtain some
basic formulas and define y~umbilical submanifolds of cosymplectic manifolds.
We investigate anti-invariant submanifolds of cosymplectic manifolds of
constant curvature with respect to r;; We also study anti-invariant subma-
nifolds with parallel f-structure in the normal bundle and anti-invariant
submanifolds of cosymplectic manifolds with vanishing cosymplectic Bochner
curvature tensor.

In chapter III, we study anti~invariant submanifolds, which are normal
to the structure vector field, of cosymlpectic manifolds. We obtain some
basic formulas and investigate the Ricci tensor and scalar curvature of normal
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anti-invariant submanifolds of M(%), where M(%) denotes a cosymplectic
manifold of constant ¢-holomorphic sectional curvature 2 We also study
anti-invariant submanifolds with parallel f-structure and a normal anti-
invariant submanifold of a cosymplectic manifold with vanishing cosymplectic
Bochuer curvature tensor.

I. Cosymplectic manifolds and submanifelds of cosymplectic
manifolds

1. Cosymplectic manifolds

Iet M be a (2m+1)-dimensional differentiable manfiold of class C~
covered by a system of coordinate neighborhoods {U;z? in which there
are given a tensor field ¢ of type (1,1), a vector field & and a 1-form g;
satisfying

(1.1 bipr=—0ot+n;g%,  $I=0,
77i¢.1'i=0’ 7:8i=1,
where here and in the sequel the indices 4,77, -~ run over the range {1,
2, seneee ,2m~+1}. Such a set of a tensor field of type (1,1), a vector field

and a 1-form is called almost contact tructure and a manifold with an almost
contact structure azn almost contact manifold.

If, in an almost contact manifold, there is given a Riemannian metric
gj: such that

(1.2) &0/ D=8 N> 7i=g:;&,
then the manifold is called an almost contact metric manifold.

If we put ¢;;=¢;g,;, we see from (1.1) and (1.2) that ¢;; is skew-
symmetric. By means of the second relationship of (1.2), we shall write
7* instead of &* in the sequel.

The almost contact structure is said to be normal if

(&, ¢1+dn@E=0,
where [¢, ¢] denotes the Nijenhuis tensor formed with ¢ and 4 the operator
of the exterior derivative.
A normal almost contact metric structure is said to be cosymplectic if the
2-form ¢;; and the 1-form 7; are both closed. It is known in [1] that the
cosymplectic structure is characterized by

(1.3) Viii=0 and Vypi=0,
where I, denotes the operator of covariant differentiation with respect to
&ji-

If we denote the curvature tensor, Ricci tensor and scalar curvature of a
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cosymplectic manifold M by K;;* K, and K respectively, then the
cosymplectic Bochner curvature tensor ([4]) is defined by
(1.4 Byjilt=Ky;i+ (0 —mph) Lji— (6,4 —n;m*) Ly
+ L (g;i—0m:) — L (gri—ma0:) + " M;;
— QM+ Myhdji— Mbdyi— 2(My;d -+ ¢ ;M H),

where
(1.5) L= ——Tml_*_——é)— {Kji+L(gji—nm)}, Li*=L;g*™,
y -1
(1L.6) M= L, Mp=Mgh, L=Lyigh=— 2o K.

We recall here the following lemma.

LEMMA. ([7]). The cosympletic Bochner curvature tensor in a cosymplectic
manifold M satisfies the following equation

Vi Byjit=—2m [Viji_Viji

(Db — 0 oni— 20 w;)V K|.

1
* 8(m=+1) (m+2)

In a cosymplectic manifold M, we call a sectional curvature

g(K(¢X, X)¢X, X)

g2(X, X)g(9X, ¢X)

determined by two orthogonal vectors X and ¢X the ¢-holomorphic sectional
curvature with respect to the vector X of M. If the ¢—holomorphic sectional
curvature is always constant with respect to any vector at every point of
the manifold M, then we call the manifold M a manifold of constant ¢
holomorphic sectional curvature. lf a cosymplectic manifold has a constant ¢-
holomorphic sectional curvature £ at every point, then the components of
the curvature tensor of the manifold are of the form ([5], [11])

a7 Kiju=— —i— (girgi1— gn8ut PurPii— Pisdi+20:;0u

N1+ Mgt g ik~ NMEin) -
A cosymplectic manifold M is said to be of constant curvature space with
respect to 7;; if the curvature tensor is of the form
(1.8) Kyt =c(riird — 173"
where 74;=g;—71; ([6])-

b= —

2. Submanifolds of cosymplectic manifolds

Let M be a (2m+1)-dimensional cosymplectic manifold with structure
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tensors (¢;%, g;» 7*), and let N be an n-dimensional Riemanian manifold
covered by a system of coordinate neighborhoods {V; y4 and isometrically
immersed in M by the immersion i : N—M. Suppose that the local expression
of the submanifold N in M is

@1 zh=zk(y%).
Here and in the sequel the indices a, b, ¢, d,e run over the range {1,2,3, -,

Differentiate (2.1) and put

(2- 2) Bbh=a[,1‘h, ab=3/6yb,
which is, for each fixed index 5, a local vector field tangent to N. These local
vector fields By* span the tangent plane of N at each point of N. Denote
by C.* 2m+1—n mutually orthogonal unit normals to N. The indices z,
9,z run over the range {n-+1,------ ,2m-+1}. If we denote by g, the metric
tensor on N induced from that of M, then we have gy, =g;;:Bs B

The transforms of B/ by ¢ can be expressed as linear combinations of
B, and C,% that is,

(2- 3) ¢th c’i =f caB ah —“f cIth’
where f¢ is a tensor field of type (1,1) defined on N, f* a 1-form for
each fixed index z. The transforms ¢C,7 of C,/ by ¢ can be expressed as

@a ¢HCI=F"Bl+q.7Ct,
where f,° is vector field of N and ¢,” is a function for each fixed = and y.

If we denote by P, the operator of the van der Waerden—Bortolotti

covariant differentiation with respect to the Christoffel symbols {bac} formed

with g3, we have the equations of Gauss and Weingarten for N

(2.5) v tBbhzhcbIC.ths

(2.6) V.Clr=—h*B.}
respectively, where k.* is the second fundamental tensor with respect to
the normal C,* and A%, =h;’g%g,s, g,. being the metric tensor of the
normal bundle of N given by g,,=g;,C,/C;/=0,,.

The structure equations of the submanifold N are given by

@7 Repea=KijuBd By BABS + Rogohs™ — Ryazhac®,
(2- 8) K ij le biB cj-B akczl =V bizcax -~V chbzzxs
(2- 9) K ij Ile biB cha:kCyl - Rbczy - (hbeyhce:c - hceyhbe.z) ’

where Rz is the curvature tensor of N and Ry,” is the curvature tensor
of the connection induced in the normal bundle. The above equations
2.7, (2.8 and (2.9) are the equations of Gauss, Codazzi and Ricci
respectively.
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The structure vector field »* can be written as
(2.10) 7t =B, +77C A

Applying the operator ¢ to both sides of (2.3), (2.4) and (2. 10), using
(1.1), (1.2) and comparing tangential parts and normal parts of both sides
respectively, we obtain

(2.11) foflb=—0L+nnt+fof (2.15)  flbno+fltn==0,
(2 12) fcafay_—_—_ “‘fc”lhy_ﬂﬂ?y, (2 16) fal"]‘2 - QzIUz:O,
(2 13) QIyQyzz *512_}_ /P +f.zafaz’ (2 17) fcd +fdc:09
(2 14) szfy°=7717]b "'f.zafab: (2 18) Q.ry+ nyzoy

where Q2y= 4282y and fa=rsgc-

Transvecting 7, to both sides of (2.3), (2.4) and (2.10), using (1.1),
(1.2) and comparing tangential parts and normal parts of both sides
respectively, we find

(2 19) fm‘,]a —fczﬂxz(), (2. 21) fcyzfy!."

(2.20) g1y +F1.=0, (2.22) 7. +7.07=1,
where  f.,=frg., and f,.=f,"g 4

A submanifold N immersed in a cosymplectic manifold M is said to be
anti-invariant in M if (T, (N))<= T, (N)*+ for each point x in N, where
T,(N) and T.(N)* denote the tangent and normal space of N at z
respectively. In an anti-invariant submanifold N we have f.2=0 because of
(2.3).

Contracting (2.11) with respect to ¢ and &, we have

(2 23) —fabfab: _n+7]c7}¢'+faxfxa_

Contracting with respect to x and =z in equation (2.13), we obtain
(2 24) fazfxar:gm +1—n— 07— quqzy.

Substituting (2. 24) into (2. 23), we obtain

(2 25) fabfabZQquzy—'2(m_n) -1 +77.r771'_77c77£'

Thus we have the following two propositions with the aid of (2.22) and
(2. 25)

ProprosITION 1([16]). Let M be a cosymplectic manifold of dimension 2m
+1 and let N be an (m+1)-dimensional anti~invariant submanifold of M.
Then the structure vector field n* is tangent to N and q,.,=0.

PROPOSITION 2. Let M be a cosymplectic manifold of dimension 2m-+1 and
let N be an m~dimensional anti—invariant submanifold of M. Then we have
Q.zyqzy:277c77£-

Moreover, if the structure vector field 7% is normal to N, them we have
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Qzy=— 0.

Suppose that N is a submanifold of the cosymplectic manifold M of
constant ¢-holomorphic sectional curvature .. Then we have from (1.7)
= '—é(fzbfac_fzrfab+2fzafbc_ﬂxﬂbgac_*_ﬂxncgab)'
If we apply the operator [; of the covariant differentiation to (2. 3),
(2.4) and (2.10) respectively and take account of (1.3), (2.5) and (2.6),
then we obtain

(2~ 27) Vb fz.‘azkbr::"r P _fcxhbax: (2- 28) Vb fc = —thIsz+fcekbey!
(2- 29) v I:Q'zz=kbez £ & -7 :rekbeza (2 30) 4 bﬂazkbaaxﬂz:
(2- 31) Vb"?z= “nekebz-

II. Tangential anti-invariant submanifolds of cosymplectic
manifolds

In this chapter we investigate anti-invariant submanifolds, which are
tangent to the structure vector field, of cosymplectic manifolds. We call
such a submanifold tangential anti-invariant submanifold.

1. Basic formulas of tangential anti-invariant submanifolds

Let N be a n—dimensional tangential anti-invariant submanifold of a
(2m+1)~-dimensional cosymplectic manifold M(z=m-+1). Then we have
f.2=0 and 7*=0.

Therefore the equations of chapter I which contain £.2 or %* can be rewritten
as

(1.1) 7=9*B2, (1.2) —dLl+npt+fof=0,
(1- 3) fqul_y=0’ (1 4) Qnyyzz ”512+f1a a5
(1.5) f#ne=0, (1.6) =1,

1.7 fif.r=n—1, (1.8) quyg®=2(m—n)+2,
(1.9  7°h*=0, (1.10) Fgpe=0.

If we transvect the equation (1.4) with ¢,* and take account of (1.3),
then we have

90”9279y + ¢ =0.
If ¢,> does not vanish on N, then it defines an f-structure in the normal
bundle ([147). I Fiq.=0, then the f-structure in the normal bundle is

said to be parallel.
We now consider the system of partial differential equations in a
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cosymplectic manifold M of constant curvature ¢ with respect to 7;;

(1.11) ViXi=crj+X;X;, Xi'=0
for unknown vector Xj.

If we differentiate (1.11) coveriantly and take account of (1. 3) of chapter
I, then we have

Vi Xi= (ers;+XaX;) Xi+ (ern+ XuX) X,
which implies
Vi Xi— ViV eXi=c(aX;—7;:X0) =curi* — 757" X

The necessary and sufficient condition for the system (1.11) to be

completely integrable is

Vi iXi—V iV iXi=— K3t X,
Since the curvature tensor of M has the form of (1.8) of chapter I, this
condition is satisfied. Hence the system is completely integrable.

Let us consider a tangential anti-invariant submanifold N of M such that
N has a solution vector X; of (1.11) as a normal vector, that is, X;=AaC,;
for a function A Transvecting (1.11) with ByB.J, we obtain

(1.12) ByBJ7 ;X j=c(gsc—Na7c) -

If we substitute X;=AC,; into (1. 12), then we have AB,i/ .Cy;i=c(gs.—1757.).
Hence we have &.*=a*(gs.—77.) for a certain index 4, where a* denotes
—c/ A

If the second fundamental tensor k,* of a tangential anti~invariant

submanifold of a cosymplectic manifold is of the form

(1 13) hbt::t—_—a'z (gbc—"vbﬂc)
for each index z, then we call such a submanifold »-umbilical submanifold.
Here a* denotes a function on N for each index =z.

2. Tangential anti-invariant submanifolds of constant curvature
spaces with respect to 7;;

In this section we consider a 7—umbilical submanifold N of a constant
curvature space M(c) with respect to 7;;. The equations (2.7) and (1.8)
of chapter I and (1.13) imply

(2.1) Ropca= (c+@) (8bc8ad— 8 ac8batNaNcba
~ 0578 ad — NaldLc T NoNd8ac)
where a denotes aa,.
Transvecting the equation (2.1) with g4, we have
(2.2) Ry.=(n—2) (c+a) (gs.—157.)-
Transvecting the equation (2.2) with gb, we have
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(2.3 R=(n—1)#n—2) (ct+a).
From (2.8) and (1.8) of chapter I we have
2.4 V ohs® =V shac®=0.
If we differentiate (1.13) covariantly along N, then we have
(2.5) V b=V 2= (gbc—757.) s
from which we find
(2.6) V o0® (g5 —N57c) — (Wpa®) (€ac—147.) =0.
Transvecting (2.6) with g%, we obtain
@7 (n—2) V s+ 7.0°7 a*=0.

We now assume that n>2. If we transvect (2.7) with 7% we have
7V .a*=0. Substituting 7°F.@*=0 into (2.7), we find

2.8 v a7=0,
from which we have
2.9 V.a=0.
From (1.1), (2.2) and (2.3) we have
(2.10) VaRpc=0, V,R=0.
From (1.10), (2.1) and (2.9), we obtain
VeRapea=0,

which means that the submanifold N is locally symmetric. Thus we have
the following theorem.

THEOREM 3. Let N be an n—dimensional tangential anti—invariant submanifold
of cosymplectic manifold M of constant curvature with respect to 1;; (n>2).
If N is a y-umbilical submanifold of M, then N is locally symmetric.

The Weyl conformal curvature tensor field of N is the tensor field C of
type (1,3) defined by

(2- 11) Cabcd = Rabcl + 7 _]_: 2 (Racabd - Rbcaad + g acRbd —8 bcRad)

(gaﬁbd - gbcaad) -

. R
(n—1) (n—2)
Moreover, we put

(2' 12) Cabc= VaRbc - VbRac - (gchaR - gachR) .

1
2(z—1)

It is well-known that a necessary and sufficient condition for a Riemannian

manifold to be conformally flat is that C,.4=0 for >3 and C,;,=0 for
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n=3.

Now let us compute the Weyl conformal curvature tensor of a 7-umbilical
submanifold N of the constant curvature space with respect to 7;;.
Substituting (2.1), (2.2) and (2 3) into the equation (2.11), we obtain
Cu2=0 provided that 2>>3. For =3 we have C, =0 by the help of (2.
10) and (2.12). Thus we have the following

THEOREM 4. If N is an n-dimensional n-umbilical submanifold of a constant
curvature space M with respect to v;; (n=3), then N is conformally flat.

3. Tangential anti-invariant submanifolds with parallel f-structure
in the normal bundle

In section 1 we have shown that ¢,” defines an f-structure in the normal
bundle of N. In this section we investigate tangential anti-invariant
submanifold with parallel f-structure in the normal bundile.

Let N be an n—dimensional tangential anti-invariant submanifold of a
(2m+1)~dimensional cosymplectic manifold and suppose that the f-structure

.7 in the normal bundle Is parallel, thatis, [";g,¥=0. Then by the equation
(2.29) of chapter I we have

3.1 ket f—f2hy?=0.
Transvecting the equation (3.1) with f.2, we have
byt fofE — 5 f2he? =00
If we substitute (1.2) into this equation and take account of (1.9), then
we have

(3- 2) he? =hp’; £ czf &
From (3.2), (1.2) and (1.9), we obtain
(3.3 haihyoz=hs s FFRE y S gz
=hot s S5y Fo? (eg—NeNg)
=holehepy f£f .
The equation (3.3) implies
(3.9 haihocs—Rs*hace= (ho*hesy— hy®oheay) FF .
If the submanifold N has commutative second fundamental tensors, that is,
(3 5) haezhebyzhaeybebzs
then the equation (3.4) implies
(3.6) hadhocr— hod"Racz=0.

From the last equation and the equation (2.7) of chapter I we obtain the
following
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PROPOSITION 5. Let N be a tangential anti—invariant submanifold of a
cosymplectic manifold M. If N has the parallel f-structure q.” in the normal
bundle ard has the commautative second fundamental tensors, them we have

Ru:a=KijuB/iBy BB,

~Let N be an n—dimensional tangential anti-invariant submanifold of a
(2m+1)-dimensional cosymplectic manifold M(%) of constant ¢—holomorphic
sectional curvature .. Then the equations (1.7) and (2.7) of chapter I
imply

3.7 Rpea= —%k (8ac8ba— 858 ad NaTc&ba ML ad

+7]a77dgbc-—7767ydgac) +han hbc.‘l:—hbdz hacx
where we have used ¢;;B, By =0.
Suppose that N has the parallel f-structure ¢, in the normal bundle and
has the commutative second fundamentll tensors. Then (36) and (3.7)
imply .

k .
3. 8) Ropea=— vy (g ac8bd — & bcg 2d — Nae88d T NpNe8 ad T Nald8se — M58 ac)»

from which we have

3.9) Rie=F (1—2) (3.~ 71
and
(3.10) R=% (a—1) =—2).

Substituting (3.8), (3.9) and (3.10) into the equation (2.11), we obtain
Cu?=0 and C,,=0 by virtue of (1.10). Thus we have the following

THEOREM 6. Let N be an n—dimensional tangential anti-invariant submanifold
of a cosymplectic manifold M(E) of constant ¢—holomorphic sectional curvature
k. If the f-structure is parallel in the normal bundle and the second
Sundamental tensors are commutative, then N is conformally flat.

On the other hand, since 7 is parallel unit vector and N is conformally

flat (or the curvature tensor of N has the form (3. 8)) we have, by a theorem
of K. Yano ([13]),

THEOREM 7. Let N be an (n+1)-dimensional tangential anti—~invariant
submanifold of a (2m--1)-dimensional cosymplectic manifold M(k) of constant
&—holomorphic sectional curvature k.. If the f—structure in the normal bundle is
parallel and the second fundamental tensors are commutative, then N is locally
a Riemannian direct product N»X R, where R' is a straight line and N* is
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an n-dimensional Riemannian space of constant curvature 715
If N is an (m+1)-dimensional anti-invariant submanifold of a (2m+1)-
dimensional cosymplectic manifold M, then N is a tangential submanifold
of M(cf. proposition 1) and ¢,”=0. Therefore we also have the equation
(8.1). From the similar arguments of theorem 7 we have the following

THEOREM 8 Let N be an (m—+1)~dimensional anti-invariant submani fold of
a (2m—+1)-dimensional cosymplectic manifold M(k). If the second fundamental
tensors are commutative, then N is locally a Riemannian direct product N™X
RY, where R! is a straight line and N™ is an m—dimensional Riemannian space
of constant curvature %

We now consider the normal connection of an n-dimensional tangential
anti-invariant submanifold of a cosymplectic manifold M(%). Substituting
(1. 7) of chapter I into the equation of Ricci (chapter I. (2.9)), we have

(3 11) Rab.ty= —"lk? ( fa: fby —fbx fay) +haeyhbez~kbeyhaex’
where we have used (1.1) and (1.2).

We assume that the normal connection of N is flat, that is, Rg,,=0.
Then we have

(3 12) haeyhbez'— hbeyhaex= % (fa:c fby '_fbx fay) .

If the f-structure is parallel in the normal bundle, then we obtain from
(3.4), (3.12) and (1.2) that

(3 13) hadzhbcx_hbdzhacz

k
=—7 (8ad€bc 8ac8ba— MeNc8 ad+ NaNc&bd

+ 1057d8 e — NaNa8bc)»
which and (3.7) imply Rg.;=0. Thus we have

THEOREM 9. Let N be an n—dimensional tangential anti—invariant submanifold
of a (2m+1)-dimensional cosymplectic manifold M(k). If the f-structure in
the normal bundle is parallel and the normal connection is flat, then N is
locally flat.

For (m-+1)-dimensional submanifold we have the following

THEOREM 10. Let N be an (m-+1)-dimensional anti—invariant submanifold
of a (2m+1)-dimensional cosymplectic manifold M(E). If the connection in
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the normal bundle is flat, then N is locally flat.

4. Tangential anti-invariant submanifolds of cosymplectic manifolds
with vanishing cosymplectic Bochner curvature tensor

Suppose that M is a (2m+1)-~dimensional cosymplectic manifold with
vanishing cosymplectic Bochner curvature tesor. Then (1.4) and lemma of
chapter I imply

4.1 Kijint (gan—06m8) Lji— (gia—078) Las+ Lan(g1:—07:)

=L (8ri—1am:) + GnMii— G inMpi~+ Mundji— My
—2(My;din+ ba;Mi) =0
and

—p.L, 1 ' —
(4' 2) Vkai VJLkz+ 8(m+1) (m+2) (¢k qul ¢J ¢kt

—20/0;) V. K=C.

Let N be an (#+1)-dimensional tangential anti-invariant submanifold of
M with vanishing cosymplectic Bochner curvature tensor. Transvecting (4. 1)
with BB,iBiB;* we find .

4.3 Ropea—haazhp s+ hpazhe s+ (_g od =002 LjiBy B

—(gpa - 7602) Le:B#B .+ LinB *B* (5. — 757,
- thbJBdh (gac_"]avc) =03
where we have used (2.7) of chapter I, ¢;;Bi/B,/=0 and (1.1).
We assume that the submanifold is y—umbilical, that is,

hbc.z =Wy (gbc - 7717770) .
Then (4.3) can be rewritten by

(4' 4‘) Rabcd —a.a® (gadgbc_ Bbd8ac— 8ad 6T ﬂaﬂdgbc—,_ 85daNc + ﬂbﬂdgac)
+ (gaz—0a72) LjiBe' B — (€30 —1s0a) L1:B*B.
+ LuB*Bi* (g5.—15m.) — LjaBy B (g0c—1a7.) =0.

Since the unit vector field 77 is parallel with respect to the connection of
N, N is locally a direct product of an N” and N! generated by 7¢ and
moreover N* is a totally geodesic hypersurface in N([10]). We now
suppose that the local expression of the hypersurface N* in N is

4.5) ¥ =y(2),
where 2° are local coordinates in N". The indices. s,¢,#,v run over the
range {1,2,...... ,n}. Differentiate (4.5) and put

4.6) Bs=p,y?, 0,=0/02",

which is, for each fixed index s, a local vector field tangent to N”. These
local vector fields B, span the tangent plane of N” at each point of N”
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and are orthogonal to % because of (1.10).
Transvecting (4.4) with B#B,’B, B4, we find
4.7 R* sy — 0% (€08 1u— &1o85u) + 85oLjiB/ B}
— 84 L1iB*B,+ LuBB tg,,
- Lththvhgsu =(),
where R*,,,, is the curvature tensor of N”, g,, the induced metric on N"
from g,, and B/*=B*B.

If we put
4.9 Cou=L;iBJ B — 5 .08,
then (4.7) can be rewritten as
4.9) R* 0+ 86Cou— 8:.CutCu8tu—Crou=0.
Transvecting (4.9) with g, we obtain
(4.10) R*,+ (»—2)C,,+Csg,,=0,

where R*,, is the Ricci tensor of N™.
Transvecting (4.10) with g, we have

1
. =1 __ R¥
.11 € ="5G-D
where R* denotes the scalar curvature of N». Therefore the equations (4. 10)
and (4.11) imply

D S 1 R*
(4 12) Ctu 71“2 R tu+ 2(71'“‘1) (71—’2) Eru

which and (4.9) show that the Weyl conformal curvature tensor C*,,, of
N" vanishes identically (4<2<m). Thus we have

THEOREM 11. Let N be an (n+1)~dimensional (n=4) y-umbilical, tangential
anti~invariant submanifold of a (2m+1)-dimensional cosymplectic manifold M
with vanishing cosymplectic Bochner curvature tensor. Then N is locally a
product of a conformally flat Riemannian manifold N" and a 1-dimensional
space N1,

We shall now seek out another condition in order to obtain the same
conclusion as theorem 11. Let N be an (»+1)~dimensional (z=4) tangential
anti-invariant submanifold of a (2m+1)-dimensional cosymplectic manifold
M with vanishing cosymplectic Bochner curvature tensor. If the second
fundamental tensors of N are commutative and the f-structure in the normal
bundle is parallel, then from (3.6) and (4.3) we have

(4.13) Rpcat (8aa—nana) LjiBy B — (gbaf —0s0a) Ly BB,
+ LB B (gs. —18m.) — LjaBy Ba* (8 ac—0a1) =O0.
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Transvecting (4.13) with B*B,’B,‘B,2, we find
(4 14) R*stu'o_l_gsthu'—gtva—{—stgtu;Dt'ug.m=09 '
where
Dy,=L;;B/B,.
Thus we have the following theorem by similar arguments of (4.10), (.
11) and (4.12).

THEOREM 12. Let N be an (n-+1)-dimensional (n=4) anti~invariant
tangential submanifold of a (2m-+1)-dimensional cosymplectic manifold M
with vanishing cosymplectic Bochner curvature tensor. If the f-structure in the
norml bundle is parallel and the second fundamental tensors of N are commut-
ative, then N is locally a product of a conformally flat Riemannian manifold
N?” and 1-dimensional space N.

Since ¢,*=0 for n=m,i.e., dim N=m-+1, we have (4.13). Hence we
have the following

TuEOREM 13. Let N be an (m+1)-dimensional (m=4) amti—invariant
submani fold of a (2m-+1)-dimensional cosymplectic manifold M with vanishing
cosymplectic Bochner curvature tensor. If the second fundamental tensors of N
are commutative, then N is locally a product of a conformally flat Rimannian
manifold N™ and 1-diemensional space N'

In the sequel, we study the case that dim N=4, ie 2=3.

THEOREM 14. Let N be a 4d—dimensional tangential anti—invariant submani-
fold of a (2m--1)~dimensional cosymplectic manifold with vanishing cosymplectic
Bochner curvature tensor. If N is y—umbilical, then N is locally a product of
a conformally flat Riemannian manifold N3 and a 1-dimensional space N

Proof. Since M has vanshing cosymplectic Bochner curvature tensor, we
have, from (4. 2),

(4.15) (ViLji—V iLs:) BBy BJ=0.
If we put Ly,=L;;ByB,, then we obtain
VaLlg= BakachinLji + L_,',:(XI .(gab - 7]a7]b) Cszci
+ Lj iB 5 (g ac™ 774774') azczla

from which and (4.15) we find

4. 16) Valye— VLot L, (gbc_ 7]1)776) —L; (ga,c - 7]a77c) =0,
where *  L,=L;;BjC  a=.

If we put L,,=L;.B,’B,°, then we have

VsLtu=BsaBthucVaLbc'
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The last equation and (4.16) imply
(4- 17) VsLtu— VtL.m+ Lsgtu”Ltgsu=0’
where L,=L,B,%

Since Ltu=C,u—{—%aza1gw, we obtain

(4.18) VL=V Lot gV az)as
Substituting (4. 18) into (4.17), we find
(4.19) V€ VtCsu+ (a"V;ax—{—Ls) 8t (aIVtax+ L) g.=0.
Transvecting (4.19) with g%, we have
(4. 20) a*f.a.+ L,=0
by the help of (4.11), (4.12) and the second Bianchi identity. Hence we
have
(4. 21) Vsczu—' V,Cm=0,
from which and (4.12) we find C*;,,=0. This completes the proof.

III. Neormal anti-invariant submanifolds of cosymplectic manifolds

In this chapter we investigate anti-invariant submanifolds, which are
normal to the structure vector field, of cosymplectic manifolds. We call
such a submanifold normal anti-invariant submanifold.

1. Basiec formulas of normal anti-invariant submanifelds

Let N be an n-dimensional normal anti-invariant submanifold of a (2m+
1)-dimensional cosymplectic manifold M (n=m). Then we have
f2=0 and 7*=0.
Therefore the equations of chapter I which contain f£,* and 7% can be
rewritten as

1.1) pr=y9C.}t (1.2) fifr=d2,

(1.3) ffe.2=0, (1.4) q297=—0+nF+f2f 5
(1.5) flhrr=0, ¢.27,=0, (1.6) 7n7p°=1,

Q.7 fifl=n, (1.8) gz =2(m—n),

(1.9 k=0, (1.10) Psn.=0,

(1.11) ho*f2=fh, (1.12) 7ifr=—hy"q".

If we transvect the equation (1.4) with ¢, and take account of (1.3)
and (1.5), then we have
979297+ qu*=0.
If the dimension of N is less than m, then, from (1.8), ¢,* does not
vanish and hence ¢, defines an f-structure in the normal bundle of N. If
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N is an m—dimensional normal anti-invariant submanifold of a (2m-+1)-
dimensional cosymplectic manifold M, then ¢, vanishes identically.

2. Normal anti-invariant submanifolds of M (k)

Let N be an n~dimensional normal anti-invariant submanifold of a (2m
+1)~dimensional cosymplectic manifold M(%) of constant ¢-holomorphic
sectional curvature k. -Then the equation (2.7) of Gauss and (1.7) of
chapter I imply

21 Rpea=— % (Zac8ba—85c80d) T hadPocs—hsi"Raczs
where we have used ¢;;B,/B;/=0 and %*B;=0.
If N is totally geodesic, then we have

k
Ropea=— T (8ac8bi—Ehc&ad) »

which shows that N is of constant curvature £

4
Transvecting (2.1) with g%, we obtain
22 Rpo=—k (n— 1) gsoHhoohses— it chec®,
from which we find
23) R=2n(n—1) +hoo b — by ohbe. |
Moreover, if the submanifold N is minimal, then (2.2) and (2.3) imply
(2 4) Rbc=‘§_‘(n_l) gbc"'hbez ec”
and
@5 R=0(a—1) ~hyuch?e.

From the equations (2.1), (2.4) and (2.5) we obtain the following
proposition.

PROPOSITION 15. Let N be an n—dimensional normal anti—invariant minimal
submanifold of a cosymplectic manifold M(E) of constant ¢~holomorphic sec-
tional curvature k. Then N is totally geodesic if and only if N satisfies one
of the following conditions

(@) N is of constant curvature %,
(b) Rbcz'ﬁ— (ﬂ - 1) &ber

) R=7i—n(n-1).
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REMARK. Proposition 15 corresponds to the case of anti-invariant
submanifold of a complex space form ([3]).

3. Normal anti-invariant submanifolds with parallel f-structure in
the normal bundle

In section 1 we have shown that g¢,” defines an f-structure in the normal
bundle. In this section we investigate normal anti~invariant submanifolds
with parallel f-structure in the normal bundle.

Let N be an n—dimensional normal anti-invariant submanifold of a (2m-+
1)~dimensional cosymplectic manifold M. Suppose that the f-structure g,”
is parallel in the normal bundle of N, that is, F;g.,=0. Then the equation
(2. 29) of chaptet I implies

3.1 byt o fE—f2hey=0.

Transvecting (3.1) with f.# and taking account of (1.2), we obtain
(3.2) ko =hy 2 fEf Q.

From (3.2) and (1.2) we have

(3.3 hod®hyce=hot LRy fOf ga=ho* chey fa*f 2.

From (3.3) we obtain the following lemma.

LEMMA 16. Let N be a normal anti—invariant submanifold of a cosymplectic
manifold. If the f-structure q,% is parallel in the normal bundle, then we

have
(3 4‘) hadxhbcz—hbdzhau:
= (haezhebw _hbezheaw)fdzfcw-

We shall now prove the following

THEOREM 17. Let N be an n—dimensional normal anti—invariant submanifold
of a (2m+1)-dimensional cosymplectic manifold M(k) and let the f-structure
q.” is parallel in the normal bundle of N. Then N is of constant curvature

—2 if and only if the second fundamental tensors of N are commutative.

Proof. Suppose that N is of constant curvature % Then the equation
(2.1) implies
hadzhbcx"“hbdzhac:::()a
from which and (3.4) we obtain
(3.5) (ko chobw— hs cheaw) ff 2 =0.
Transvecting (3.5) with f4,, we have
(3.6) (B ehebw— he® heaw) (q705° 05— 027°) f* =0
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by the help of (1.4).
On the other hand, we have, by the help of (3.2),
hbcyQyz=hberf T Py
which and (1. 3) imply

(3- 7) hbcyQyz=0-
From (3.7) and (1.9), (3.6) can be reduced to
(3 8) (haexkebw—hbezheaw)f -~ =0.

Transvecting (3. 8) with f¢, and by the similar arguments, we obtain
haezheby —hyfohes y 0,
which shows that the second fundamental tensors of N are commutative.

Conversely, suppose that the second fundamental tensors of N are
commutative. Then from lemma 16 we have

hodhyez—hpi o =0.
Substituting the last equation into (2.1), we have

k
Repea=—7 (80c8bd—8bc8ad)»

which shows that the submanifold N is of constant curvature —k—. This

completes the proof of the theorem. :

Let us consider an m-dimensional normal anti-invariant submanifold: of:a
(2m—+1)—dimensional cosymplectic manifold M. Then ¢,”=0 because of
(1. 8). In this case we also have the equations (3.1) and (8.4). Hence the
theorem 17 is satisfied without the assumption with respect to f-structure.
Thus we have

THEOREM 18. Let N be an m—dimensional normal anti—~inveriant submanifold
of a (2m--1)-dimensional cosymplectic manifold M(k). Then N is of constant

curvature -f—i— if and only if second fundamental temsors of N are commutative.

We now consider the normal connection of an z-dimensional normal anti-
invariant submanifold of a cosymplectic manifold M (k) of dimension (2m-+
1). Substituting (1.7) of chapter I into the equation of Ricci (chapter I
(2.9)), we obtain

(3 9) Rbc.zy:hbeyhcem_hceykbe:c_% (fb.r fcy —fc.z fby) H

where we have used (1.1) and (1.2).
We assume that the normal connection of N is flat, that is, Rgp.y=0
Then we obtain
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(3 10) hbeyhcex—hceyhbezzjkf ( fb:r fcy _fc.rfby)-

If the f-structure is parallel in the normal bundle, then (3.4) and (3. 10)
imply

had'zhbc.t —"hbdzhaczz‘% (gacgbd _gbcgad) s
from which and (2.1) we get R,;.2s=0. Thus we have

THEOREM 19. Let N be an n—dimensional normal anti~invariant submanifold
of M(k) with parallel f-structure in the normal bundle. If the connection
in the normal bundle is flat, then N is locally flat.

4. A normal anti-invariant submanifold of a cosymplectic manifold
with vanishing cosymplectic Bochner curvature tensor

As a theorem giving a relation between the Weyl conformal curvature
tensor and the contact Bochner curvature temsor, K. Yano ([15]) proved
the following

THEOREM. Let N be an n—~dimensional (n=3) totally umbilical, anti~invariant
submani fold normal to the structure wvector field of a (2m+1)-dimensional
Sasakian manifold M with vanishing contact Bochner curvature temsor. Then
N is conformally flat.

In this section we investigate a normal anti-invariant submanifold of a
cosymplectic manifold with vanishing cosymplectic Bochner curvature tensor
and obtain a theorem corresponding to the above theorem.

Let N be an z-dimensional normal anti~invariant submanifold of a (2m+
1)-dimensional cosymplectic manifold M with vanishing cosymplectic Bochner
curvature tensor. Then from (1.4) and lemma of chapter I we have
respectively

4.1) Kyjin+ (gen—namn) Lji— (gin—n;70) Ly
+ Lpn(gii— 1% — Ljn(gri—mam:) + dand;
= @;nMpyit+ Murdji— Mjpd — 2 (Myjdin+ daiMin) =0,
(4.2) pilji—ViLy+ 8(m+1;)l(m+2) (0K 0;i— G Ori—204;0:" )V K =0.
We now assume that the submanifold N is totally umbilical, that is, &;=
=a*g,,. Transvecting (4.1) with B, B,/B/Bs* we find

(4 3) Rabud - (gadgbc _gbdgac) aza1+gadLjiBbchi
- gdekiBachi + LkhBadehgbc - Lthbdehgat =0
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by virtue of (2.7) of chapter I, (1.1) and ¢;;B/B;'=0.
If we put

Cro=L;:ByBi—+a.ags,

then (4.3) can be rewritten as

(4 4) Roypeatsg 2dCoc— 88dCact Coagoo— Cragoc=0.
Transvecting (4.4) with g%%, we obtain
___ 1 1

Therefore (4.4) and (4.5) show that the Weyl conformal curvature tensor
of N vanishes identically.

Transvecting (4.2) with B, BB, we obtain

“.6) (ViLji—V jLyi) Bo*By/ B,/ =0
by virtue of ¢;;By/B=0.

If we put Ly=L;;B/B,; and L,=L;:BJC.,jaz,
then we have

VaLbc= (VkL.ii) Bakachi'l' chab+ngac:

from which and (4.6) we have

(4- 7) VaLbc—" VbLac+Lagbc_ngac=O'
Since L;,=C;.+ %azaxgbc we find
(4- 8) VaLbc = Vacbc + Ebe (Vaax) a“.

Substituting (4.8) into (4.7), we find
(4.9)  VCp—ViCoct (@ oas+ L,) g — (@*F pa 2+ Ly) g2=0.
Transvecting (4.9) with g%, we have

L,+a*p 0,=0

by the help of (4.5) and VbRa”=%—VaR Therefore(4.9) can be rewritten
as

VoRpe—VsRac— L 1) (gchaR""gachR) ={.

2(n—
from which we find C,;,=0. Thus we have the folowing

THEOREM 20. Let N be an n—dimensional normal totally umbilical anti—
invariant submanifold of a (2m-+1)—dimensional cosymplectic manifold M with
vanishing cosymplectic Bochner curvature tensor (3=n=<m). Then N is
conformally flat.
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