ON DIRECT LIMITS AND PRODUCTS OF RINGS OF QUOTIENTS

Mun-Gu Sohn and Suk Geun Hwang*

§ 1. Introduction

Let R be an associative ring with a nonzero identity element 1, and let $R^{\mathscr{M}}$ denote the category of all left R-modules and R-homomorphisms. For a given torsion radical σ on $R^{\mathscr{M}}$ the ring of quotients $Q_{\sigma}(R)$ of R $w.r.t.\sigma$ is defined by a direct limit [1]

$$Q_{\sigma}(R) = \lim_{R \to \infty} \operatorname{Hom}_{R}(U, R/\sigma(R)), U \in \mathcal{F}_{\sigma}$$

where \mathcal{F}_{σ} is the associated filter of σ and the direct limit is taken over the downwards directed family \mathcal{F}_{σ} of left ideals([1], [5]).

A more general form of a ring of quotients can be found in [2]. A ring Q is called a ring of quotients of R w.r.t. σ if R is a subring of Q such that ${}_RR$ is a large σ -submodule of ${}_RQ$ [2].

In this paper, we determine the structure of the direct limit $\varinjlim Q_{\sigma_i}(R)$ of the rings of quotients of a left noetherian ring R with $\{\sigma_i | i \in I\}$ being an increasing family of torsion radicals on ${}_{R}\mathscr{M}$ and I being a right directed preordered set. And we prove that the ring of quotients of a product ring is isomorphic to the product of rings of quotients of the factor rings by constructing some torsion radical for the product ring.

§ 2. Some preliminaries

As is in the previous section, let R be an associative ring with a nonzero identity element 1 and let $R \in \mathbb{R}$ denote the category of all left R-modules and R-homomorphisms. By a torsion radical on $R \in [4, p. 5]$ we mean an object function $\sigma: R \to R$ which satisfies the following conditions:

- (i) $\sigma(M)$ is a submodule of M for every R-module M;
- (ii) whenever $f: M \rightarrow N$ is an R-homomorphism, $f(\sigma(M)) \subset \sigma(N)$;
- (iii) $\sigma(M/\sigma(M)) = 0$, for every R-module M;
- (iv) for all R-modules M and N such that N is a submodule M, we have $\sigma(N) = N \cap \sigma(M)$.

Also, by a Gabriel filter (or merely a filter) we mean a nonempty family \mathcal{F} of left ideals of R which has the properties:

- (i) if $U \in \mathcal{I}$, and if V is a left ideal of R such that $V \supset U$, then $V \in \mathcal{I}$;
- (ii) if $U, V \in \mathcal{I}$, then $U \cap V \in \mathcal{I}$;
- (iii) if $U \in \mathcal{I}$, $x \in R$, then there is a $V \in \mathcal{I}$ such that $Vx \subset U$.

It is known that there is an one to one correspondence between torsion radicals and the filters. Let σ be a torsion radical on $_{R}M$. and T_{σ} be its associated filter. A left R-module M is called to be σ -torsion (σ -torsion free) if $\sigma(M) = M$ (resp. $\sigma(M) = 0$). A submodule N of a module M is called a σ -submodule if M/N is σ -torsion. A left R-module E is called to be σ -injective if, whenever N is a σ -submodule of a left E-module E is called to be E-module E

For two torsion radicals σ and τ , there is defined $\sigma \leq \tau$ if and only if $\sigma(M) \subset \tau(M)$ for every module M, and under this order, any set of torsion radicals on R^M has an infimum in the set of all torsion radicals [1]. With this definition in mind, we know immediately that if M is σ -torsion (τ -torsion free), then it is τ -torsion (σ -torsion free) whenever $\sigma \leq \tau$.

§ 3. The direct limits of rings of quotients

Throughout this section, let I be a right directed preordered set, and $\{\sigma_j | i \in I\}$ be an increasing family of torsion radicals on $_{R}\mathscr{M}$. The torsion radical $\sup_{i \in I} \sigma_i$ will be denoted by σ_o and the associated filters \mathscr{F}_{σ_i} and \mathscr{F}_{σ_o} of σ_i and σ_o will be denoted by \mathscr{F}_j and \mathscr{F}_o for the brevity.

In the following, we prepare some lemmas which tells the relationship between the direct limit of a direct system of modules and each factor of the system.

LEMMA 1. Let (M_i, ϕ_{ji}) be a direct system of R-modules over I. Then $\varinjlim_{(\sigma_i - torsion free resp.)} I_i$, for each $i \in I$, M_i is σ_i -torsion $(\sigma_i$ -torsion free resp.).

Proof. Suppose that M_i is σ_i -torsion for each $i \in I$, and let $x \in \lim_{i \in I} M_i$ be such that $x \neq 0$. Then, for the restriction ϕ_i of $\bigoplus_{i \in I} M_i \to \lim_{i \in I} M_i$ to M_i , there is some $i \in I$ and some $x_i \in M_i$ such that $x = \phi_i(x_i)$. Since $\sigma_i(M_i) = M_i$, there is an ideal $U \in \mathcal{F}_i$ such that $Ux_i = 0$, so that $Ux = U\phi_i(x_i) = \phi_i(Ux_i) = 0$. But, since $U \in \mathcal{F}_o$ also, we have that $\lim_{i \to \infty} M_i$ is σ_o -torsion.

Next suppose that $\sigma_i(M_i)=0$ for every $i\in I$ and that $x=\phi_i(x_i)\neq 0$ be an arbitrary element of $\lim_{r\to\infty}M_i$ with $x_i\in M_i$ for some $i\in I$. Then $\phi_j(x_i)\neq 0$ for all $j\geq i$. Let $U\in \mathcal{F}_o$ then $U\in \mathcal{F}_k$ for some $k\in I$. Let $r\in I$ be such that $i,\ k\leq r$, then $x=\phi_r(x_r)$ where $x_r=\phi_{ri}(x_i)\in M_r$. Since, for all $s\in I$ such that $s\geq r$, $U\in \mathcal{F}_s$ and $\sigma_s(M_s)=0$, we have, for all $s\geq r$, that $\phi_{sr}(Ux_r)=U\phi_{sr}(x_r)\neq 0$ so that $Ux=U\phi_r(x_r)=\phi_r(Ux_r)\neq 0$.

Moreover, if R is left noetherian, then we know that the σ_o -injectivity of the direct limit follows from the σ_i -injectivity of each M_i .

LEMMA 2. Let R be left noetherian, and let (M_i, ϕ_{ji}) be a direct system of R-modules over I. Then $\varinjlim M_i$ is σ_o -injective if, for each $i \in I$, M_i is σ_i -injective.

Proof. Let $U \in \mathcal{F}_o$ and $f \in \operatorname{Hom}_R(U, \lim_{i \to \infty} M_i)$. It suffices to show that f can be extended to a homomorphism $R \to \lim_{i \to \infty} M_i$ by [1]. For each $i \in I$, let ϕ_i be the restriction of $\bigoplus_{i \in I} M_i \to \lim_{i \to \infty} M_i$ to M_i . Since U is finitely generated, $f(U) \subset \phi_j(M_j)$ for some $j \in I$. Let M_j be a finitely generated submodule of M_j such that $\phi_j(M_j') = f(U)$, and let ϕ_j' be the restriction of ϕ_j to M_j' , then $K_j = \phi_j'^{-1}(0)$ is also finitely generated. Since $\phi_j(K_j) = 0$, there is some $i_o \in I$ such that $\phi_{ij}(K_j) = 0$ for all $i \geq i_o$. Since $U \in \mathcal{F}_o$, there is some $k \in I$ such that $U \in \mathcal{F}_k$. Let $r \in I$ be such that i_o , $k \leq r$, then $U \in \mathcal{F}_r$. Since M_r is σ_r -injective, the homomorphism f which may be considered as a homomorphism $U \to M_r$ by th fact that $\phi_{rj}(K_j) = 0$ can be extended to a homomorphism $g: R \to M_r$. And we may consider g as a homomorphism $R \to \lim_{i \to \infty} M_i$.

From the above lemmas, we know easily that if σ is a (fixed) torsion radical, then the direct limit of σ -torsion (σ -torsion free) modules is σ -torsion (σ -torsion free resp.), and that if R is left noetherian, then the direct limit of σ -injective modules is σ -injective.

Now, we are to construct the direct limit of rings of quotients with the aid of the following results. Before entering our discussion, recall that the homomorphism $R \rightarrow Q_{\sigma}(R)$ is denoted by ℓ_{σ} .

LEMMA 3. Let σ and τ be torsion radicals on RM such that $\sigma \leq \tau$. Then there is a unique homomorphism $\phi_{\tau\sigma}: Q_{\sigma}(R) \to Q_{\tau}(R)$ such that $\phi_{\tau\sigma}\iota_{\sigma} = \iota_{\tau}$.

Proof. This result follows from the fact that $Q_{\tau}(R)$ is faithfully τ -injective and that the σ -submodule $R/\sigma(R)$ of $Q_{\sigma}(R)$ is also a τ -submodule of $Q_{\sigma}(R)$.

By the uniqueness of such a homomorphism $\phi_{\tau\sigma}: Q_{\sigma}(R) \to Q_{\tau}(R)$, we have also easily the following

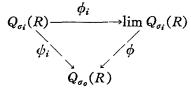
COROLLARY. Let σ, τ, μ be torsion radicals on $_{R}\mathscr{M}$ such that $\sigma \leq \tau \leq \mu$. Then we have $\phi_{\mu\sigma} = \phi_{\mu\tau}\phi_{\tau\sigma}$, where each of $\phi_{\mu\sigma}, \phi_{\mu\tau}$ and $\phi_{\tau\sigma}$ is the unique homomorphism such as stated in the above lemma.

For $i, j \in I$ with $i \leq j$, $\sigma_i \leq \sigma_j$ by the assumption on the set $\{\sigma_i | i \in I\}$. From now on, the homomorphism $\phi_{\sigma_j\sigma_i} : Q_{\sigma_i}(R) \to Q_{\sigma_j}(R)$ appeared in the Lemma 3 will be denoted by ϕ_{ji} for conveniences. Then, by the corollary to Lemma 3, we know that $(Q_{\sigma_i}(R), \phi_{ji})$ forms a direct system over I. Let's denote $Q_{\sigma_i}(R) \to \lim_{n \to \infty} Q_{\sigma_i}(R)$ by ϕ_i as usual.

Since, for a torsion radical σ , a left R-module is faithfully σ -injective if and only if it is σ -injective and σ -torsion free, we know that, for a left noetherian ring R, $\varinjlim_{\sigma} Q_{\sigma i}(R)$ is faithfully σ_{σ} -injective by the Lemmas 1 and 2.

THEOREM 1. If R is a σ_o -torsion free left noetherian ring, then $\varinjlim Q_{\sigma_i}$ (R) is isomorphic to $Q_{\sigma_o}(R)$ in a unique way.

Proof. Let, for each $i \in I$, the homomorphism $Q_{\sigma_i}(R) \to Q_{\sigma_o}(R)$ be denoted by ϕ_i , and let $\phi_{ji} = \phi_{ji}$. Then, by the corollary to Lemma 3, $\{\phi_i | i \in I\}$ forms a direct system of homomorphisms so that $\phi = \varinjlim \phi_i$ is the unique homomorphism $\varinjlim Q_{\sigma_i}(R) \to Q_{\sigma_o}(R)$ which makes the following diagram commute for each $i \in I$.



Since, for every $i,j\in I$, $\phi_i\iota_{\sigma_i}=\phi_j\iota_{\sigma_j}$, we can define a homomorphism $\eta:R\to \varinjlim Q_{\sigma_i}(R)$ by $\eta=\phi_i\iota_{\sigma_i}$ for each $i\in I$. Then, since $\varinjlim Q_{\sigma_i}(R)$ is faithfully σ_o -injective and R is a σ_o -submodule of $Q_{\sigma_o}(R)$, we can extend η to a unique homomorphism $\rho:Q_{\sigma_o}(R)\to \varinjlim Q_{\sigma_i}(R)$. But then $\phi\rho\iota_{\sigma_o}=\phi\eta=\phi\phi_i\iota_{\sigma_i}=\iota_{\sigma_o}$ for all $i\in I$ so that $\phi\rho$ is the identity homomorphism of $Q_{\sigma_o}(R)$ onto itself. By a similar computation, we get that $\rho\phi$ is the identity homomorphism of $\varinjlim Q_{\sigma_i}(R)$ onto itself. Therefore we know that ϕ is the uniquely determined isomorphism of $Q_{\sigma_o}(R)$ onto $\varinjlim Q_{\sigma_i}(R)$.

§ 4. Ring of quotients of a product ring

In this section, by a ring of quotients of R w.r.t. σ we shall mean a ring Q containing R as a subring such that R is a large σ -submodule of R as left R-modules [2].

Some useful properties of rings of quotients can be found in [2]. We will state some of them as our lemmas.

LEMMA 4. ([2]) Let $Q_{\sigma}(R) = \lim_{\longrightarrow} \operatorname{Hom}_{R}(U, R/\sigma(R)), U \in \mathcal{F}_{\sigma}$ be the ring of quotients of R w.r.t. σ constructed by Goldman, O. [1]. Then any ring of quotients of R w.r.t. σ is a subring of $Q_{\sigma}(R)$.

From such a point of view, we know that $Q_{\sigma}(R)$ is the maximal one in the class of all rings of quotients of R w.r.t. σ .

LEMMA 5. ([2]) Let Q be any ring containing R as a subring. Then Q is isomorphic to $Q_{\sigma}(R)$ if and only if Q is a ring of quotients of R w. r. t. σ such that, for every $U \in \mathcal{F}_{\sigma}$ and every $f \in \operatorname{Hom}_{R}(U, R)$, there is a unique $q \in Q$ such that f(u) = uq for all $u \in U$.

Let $\{R_i | i \in I\}$ be a nonempty family of rings each of whose members has a nonzero identity element. For each $i \in I$, let σ_i denote a torsion radical on R_i such that $\sigma_i(R_i) = 0$ and \mathcal{F}_i be its associated filter. In the rest of this paper, we construct a torsion radical σ on R_i with $R = \prod_{i \in I} R_i$ from the family $\{\sigma_i | i \in I\}$, and will prove that $Q_{\sigma}(R)$ is, in fact, isomorphic to the product ring $\prod_{i \in I} Q_{\sigma_i}(R_i)$ of rings of quotients $Q_{\sigma_i}(R_i)$, $i \in I$.

Let's denote by κ_i and π_i the canonical injection $R_i \rightarrow R$ and the canonical projection $R \rightarrow R_i$ respectively. It can be easily checked that U is a left ideal of R if and only if, for each $i \in I$, $\pi_i(U)$ is a left ideal of R_i .

THEOREM 2. The class $\mathcal{F} = \{U = \prod_{i \in I} U_i | U_i \in \mathcal{F}_{a_i}\}$ forms a Gabriel filter on R.

Proof. Let B be a left ideal of R containing some $U = \prod_{i \in I} U_i \in \mathcal{F}$. Then, for each $i \in I$, $U_i \subset \pi_i(B) = B_i$ so that $B_i \in \mathcal{F}_{\sigma_i}$. Thus we have that $B = \prod_{i \in I} B_i$ is a member of \mathcal{F} .

Next, since, clearly, $(\pi_{i \in I} U_i) \cap (\pi_{i \in I} B_i) = \pi_{i \in I} (U_i \cap B_i)$ for any $\pi_{i \in I} U_i$, $\pi_{i \in I} B_i \in \mathscr{I}$ and \mathscr{I}_{σ_i} is a filter on R_i for each $i \in I$. we know that \mathscr{I} is closed under the finite intersection. And, now, suppose that $r \in R$ and $U = \pi_{i \in I} U_i \in \mathscr{I}$. Then, for each $i \in I$, $U_i \in \mathscr{I}_{\sigma_i}$ and $r(i) \in R_i$, and hence there exists a $B_i \in \mathscr{I}_{\sigma_i}$ such that $B_i r(i) \subset U_i$ so that $(\pi_{i \in I} B_i) r \subset U$. But $B = \pi_{i \in I} B_i \in \mathscr{I}$. Therefore \mathscr{I} is a filter on R.

Let's denote by σ the torsion radical on $_{R}M$ corresponding to the filter $\mathscr F$ just constructed in above theorem.

THEOREM 3. Let Q_i be a ring containing R_i as a subring, for each $i \in I$, so that $R = \prod_{i \in I} R_i$ is a subring of $Q = \prod_{i \in I} Q_i$. Then Q is a ring of quotients of R w. r. t. σ if and only if:

- (i) Q_i/R_i is σ_i -torsion free for each $i \in I$; and
- (ii) for every nonzero $q \in Q$, there exists some $j \in I$ such that $R_j q(j) \cap R_j \neq 0$.

Proof. (Necessity) Let $q_i \in Q_i$, then $q = \kappa_i(q_i) \in Q$. Thus there is a $U = \prod_{i \in I} U_i \in \mathcal{F}$ such that $Uq \subset R$, so that $U_i q_i \subset R_i$ showing us that (i) holds. Next, let $0 \neq q \in Q$. Then $Rq \cap R \neq 0$ since Q is an essential extension of Q and Q but this implies that there is some $j \in I$ such that $R_i q_j \cap R_j \neq 0$. Therefore we get (ii).

(Sufficiency) Assume (i) and (ii), and let $q \in Q$. Then $q(i) \in Q_i$ for each $i \in I$. Thus, by (i), there is some $U_j \in \mathcal{F}_{\sigma_j}$ such that $U_i q(i) \subset R_i$. Now, the ideal $U = \prod_{i \in I} U_i \in \mathcal{F}$ satisfies the relation $Uq \subset R$. And for $0 \neq q \in Q$, we have, by (ii), that $R_j q(j) \cap R_j \neq 0$ for some $j \in I$, which implies that $Rq \cap R \neq 0$ showing us that RQ is an essential extension of R.

Since any ring of quotients of a ring w.r.t. a torsion radical contains the original ring as a subring, we have easily the following

COROLLARY. Let for each $i \in I$, Q_i be a ring of quotients of R_i w.r.t. σ_i . Then $Q = \prod_{i \in I} Q_i$ is a ring of quotients of $R = \prod_{i \in I} R_i$ w.r.t. σ .

With the aid of the above Corollary and the Lemma 5, we are to give one of our main theorems in the following

THEOREM 4. $Q_{\sigma}(\prod_{i \in I} R_i)$ is isomorphic to $\prod_{i \in I} Q_{\sigma_i} (R_i)$.

Proof. Let $R = \pi_{i \in I} \ R_i$ and $Q_i = Q_{\sigma_i}(R_i)$. Since, for each $i \in I$, Q_i is a ring of quotients of R_i w. r. t. σ_i , $\pi_{i \in I} \ Q_i$ is a ring of quotients of R w. r. t. σ by the corollary to Theorem 3. Let $U = \pi_{i \in I} \ U_i \in \mathcal{F}$, and let $f \in \text{Hom}_R$ (U, R). Then, for each $i \in I$, $\pi_i f \kappa_i \in \text{Hom}_{R_i}(U_i, R_i)$. Thus there is a (unique) $q_i \in Q_i$ such that $\pi_i f \kappa_i(u_i) = u_i q_i$ for all $u_i \in U_i$ by [2, Theorem 3, Corollary]. Let $u \in U$ and $u(i) = u_i$, then $\kappa_i(u_i) = e_i u$ where e_i is an element of R such that $e_i(j) = \delta_{ij}$, the Kronecker's delta. Let $q \in \pi_{i \in I}Q_i$ be defined by $q(i) = q_i$ then $(uq)(i) = u(i)q(i) = u_i q_i = \pi_i f \kappa_i(u_i) = \pi_i f(e_i u) = \pi_i(e_i)f(u) = \pi_i f(u) = f(u)$ (i) for all $i \in I$. Hence, for any $f \in \text{Hom}_R(U, R)$, we have

found a $q \in \pi_{i \in I} Q_i$ such that f(u) = uq. Therefore, by Lemma 5, $\pi_{i \in I} Q_{\sigma_i}(R_i)$ is isomorphic to $Q_{\sigma}(R) = Q_{\sigma}(\pi_{i \in I} R_i)$ as required.

References

- 1. Goldman, O., Rings and modules of quotients, J. of Algebra 13 (1969), 10-47
- 2. Hwang, S.G., Some aspect of rings of quotients, J. Korean Math. Soc. 17(1981), 193-196.
- 3. Lambek, J., Lectures on rings and modules, Chelsea Pub. Co. NewYork (1976)
- 4. _____, Torsion theories, additive semantics and rings of quotients Lecture Notes in Math, 177-Springer Verlag (1971)
- 5. Stenstrom, B., Rings and modules of quotients, Lecture notes in Math. 237-Springer Verlag (1971)

Kyungpook University and University of Wisconsin, Madison