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For a sequence X, X, --- of indepent, identically distributed random variables (i.i.d. r.v.s) with
Sy=X,++-+X,, Kolmogorov-Marcinkiewicz Strong Law of Large Numbers [1,2] asserts that if
E(|X,|") <o, then #~V7(S,—.C,) 25,0 for 0<r<2, where C,=0 if 0<r<1 and C,=E(X,) if
1<r<2. From this point of view, for the above sequence X, X,, .- with m.g.f. f(¢)<eo for all
>0, Y.K. Choi(3] studied the maximum D,(N,K) of the N~K+1 averages of the form K-/r
(Sn4s—Ss) for 0<n<N—K, where S,=0 and 0<r<1, who proved that, for a wide range of positive
numbers a, limy..D, (N, ((C(a)logN) ¥ "/7))=a with probability 1 (w.p.1), where C(a) is a known
constant depending on @ and the distribution of X;. This is an extension of the Erdds-Rényi new
law of large numbers. At first, J. Steinebach (1978) proved that the existence of m.g.f, f(¢) is a
necessary condition for the Erdds-Rényi law of large numbers in the case =1, The purpose of this
paper is to show that limsupy...D,(N, [(C(a)logN) @ "/"]y=0c0 for 0<r<1, if the m.g.f. does not
exist for all £>0.

For r=1, P. Erdss and A. Rényi (1970) developed their original “A new law of large numbers”
as follows.

Theorem 1, (Erdss-Rényi) Let X, X,, -+ be a sequence of nondegenerate i.i.d. r.v.s on a probabi-
lity space (82,4, P) with m.g.f. f(£)<oo for t[0,t), 0<t,<loo, For a positive number a and for
a known constant C(a) depending on a and the distribution of X, let inf,f(t)exp(—ta)=—exp(—1/
C(a)). Then C(a)>0 and

(1) limy..D,(N, (C(a)logN))=a w.p.1,

where [z denotes the integral part of z.

Proof. See [4).

The following Theorem 2 states the extension of Erdés-Rényi law of large numbers for 0<r <1.

Theorem 2. (3] Let X, X,, - be a sequence of nondegenerate i.i.d. r.v.s on (8,d,P) with f(¢)
Lo for t=(0,4) and 0 <r<1. Then for every a>0 and C(a)>0 such that inf,f()exp(—ta)=exp
(~1/C(a)), we have

(2) limy..D, (N, ((C(a)logN) ® ")) =a w.p.1.

Since the existence of m.g.f. yields an exponential convergence rate for the large deviation pro-
babilities P(n~'S,>a), the existence of m.g.f. is sufficient for proving (1) and (2). But, it is a
question whether the existence of m.g.f. is also necessary to retain assertions (1) and (2) by ex-
ponential large deviation probabilities. From Petrov and Sirokova (1973) we get a positive answer



as follows.

Theorem 3. [5) Let X, X,, - be a sequence of i.i.d. r.v.s with
PRy Sk, 20) SApFr, Ky=1,2,+; 0<r<l,
Sfor some constants a, A and 0<p<{1. Then there exists some £, >0 such that f(#)<eo for t=[0,¢t,
Proof. See (5], and it follows from the fact that
P(Ky~ 1778k, >a) <P(Ky~'Sk,>a) for 0<r<1,

Corollary 4. Let X\, X,, -+ be a sequence of i.id. r.v.s with f(t)=oc for all £>0. Then for

constants a and p (0<p<1),
limsupy..P(Ky~1/"Sx,>8) /pFr=o0,

This Corollary 4 is essential to prove the following Theorem 5 for r=],

Theorem 5. (6) Let X,, X,, - be a sequence of i.i.d. r.v.s with f(t)=oco for all t>0. Then
have
limsupy-.Di (N, [C(a)logN]))=0cc w.p.1
for every positive constant C(a).

Now we are ready to state and prove the main Theorem 6.

Theorem 6. Let X;,X,, -+ be a sequence of i.id. r.v.s with f(t)=o00 for all £>0. Then we ha

limsupy_..D, (N, [(C(a)logN)/1)) =00 w.p.1
for every positive constant C(a) depending on a and the distribution of X,, where q=r/(2—r) a
0<r<l1.

Proof. For arbitrary a and 0<{p<l, Corollary 5 implies the existence of a subsequence {Ky;}

1525..- Of integers such that

P(Kyn;j V" Sgy2a) 20", j=1,2, -
Let Ky=[(C(a)logN)!77], then

P(D,(Nj, Kyj<a)

<P(max ) {Sikpi—Sii—n k) Kunir7<a} )

i=1yeee ONj/Rn)

< {1—P(Sk,o Kyt Za)}y Niskepd

<{1—p*ni}Wirkud exp(—p*n(Nj/Kn;]).
If 1>p=exp(—1/C,(a)), where C (a)>C(a), we have

pFwia> pC @ 1ogNi— Nj=C (@) /€y (@) o NTj~ (1-28)

Zp(c(a)logNj)'/"

and

pK,,iqZpK,,,Zp(C(a>logNi)‘\'_
Hence we can take a suitable >0 such that

(3) pFu>Nj-01-20,
For all sufficiently large j, say j>j,,
(4) (Nj/Kn;)=[Nj/((C(a)logNj)'74])>Nj*-3,

because there is Nj, such that C(a)+logNj<Nj% for all Nj>Nj, if ¢5-/0(0<gs<1/2).
From (3) and (4), we have

—50—.



P(D,(Nj, Ky;)<a)<exp(—Nj®) for all j>j.
By the integral test,
T P(D,(Nj, Ky;)<a)<oo,
Thus, by the Borel-Cantelli lemma,
liminfy...D,(Nj, Ky;)2a w.p.l.
Therefore, we have
limsupy-..D, (N, Ky)2a w.p.l.
Since a is arbitrary, the proof is complete.
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