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A Common Fixed Point Theorem for Generalized Meir-Keeler
type Contractive Conditions in the Saks Spaces.

By Kwon Bai Moon

i. Introduction.

Recently, some common fixed point theorems for commuting mappings in a space with two metric
are proved by K. Iseki (1] and S.L. Singh (2].

In this paper, applying some common fixed point theorems of Park (3] and Park-Rhoades (4] for
commuting mappings in complete metric space, we shall prove a common fixed point theorem in the

Saks spaces.

2. Preliminaries.

Let X be a normed linear space. A real valued function ||+|| defined on X will be called a B-norm
if it satisfies the following conditions:

() {zll=0 if and only if z=0
@) Nzt <lzl+1yl

3) lazll=]allzl, a:any real number.

Each real valued function [« satisfying the above conditions (1), (2) and the following one:

(4) if the sequence {a,} of real numbers converges to a real number a and |z,—z|—0 as n-
oo, then [a,z,—az]—0 as n—oo, will be called a F-norm.

A two norm space is a linear space X with two norms, a B-norm f«}; and a F-norm ||. and
denoted by (X, {l+[ls, lI+l2).

If two norms {[»[|; and [[+[; are defined on X and z,=X, |z.l,—0 as n—oo implies |z,[.—0,
then the norm ||+, is called non-weaker than {-|l; in X. (denoted by [+||,<ll<ll). If §+l,<|i+|l, and
+1:<ll+lls, then the norms |«|; and ||, are equivalent.

A sequence {[z,} of points in a two norm space (X, ||||;, |-||;) is said to be y-convergent to z, in

X if supflz,ll;<{co and lim|jz,—a4[,=0, and a sequence {z,} in a two-norm space is said to be
—

r-cauchy if (x,,——x,,”LO aS P, gn—>0,

A two norm space is called y-complete if for every y-Cauchy sequence [r,} in two norm space,

there exists z,=X such that x,,l»xo.

Let X be a normed linear space cond |¢||; is a B-norm and [[+[; is a F-norm on X. Let X,—
[ze=X : ||z);<<1} and define d(z,y)=[z--y|, for all 2,y in X,. Then d is a metric on X, and the
metric space (X,,d) will be called a Saks set. If (X;,d) is complete, it will be called a Saks space
and denoted (X,,d) by (X, |-l lI+]2).

In (5], W. Orlicz has proved the following:



Theorem 1. Let (X, d)=(X, |+|l;, I+}l:) be a Saks space. Then the following statements are equi-
valent:

(1) lelly is equivalent to |+|, on X.

(@) X, |i+lly) is a Banch spaace and |+|,>|+[l, on X.

(3) (X, |l+llz) is a Frechet space and ||+{;>|+|l; on X.

3. Main Theorem.

Let f be a continuous selfmap of a Saks space (X,,d)=(X, ||, I*{2), Cr={g|g : X—X such that
fe=gf and gXC fX]}.

For zy=X, the sequence {fz,] ,2, is called the f-iteration of z, under g, and is defined by fz,=
8%y, #=0,1,2,-- with the understanding that, if fz,=fz.,, for some n, then fz.,;=fz, for
each j>0,

Theorem 2, Let (X, d)=(X, [+l |ll2) be a Saks space which ||+||, is equivalent to |+|; on X.
If two commuting mappings f and g from X into itself satisfy the following conditions:

D g=Cs

(2) f and g are continuous with respéct to [l-|l;.

(8) For each >0, there exists a 8 >0 such that

e<max {[| fx—fyllz, |fx—gzlls, 1fy—gylle, U fz—gyla+ | fy—gz|.])/2} et 8 implies | gz —gy| ..

Then f and g have a unique common fized point p in X, and for each z,&X, any f-iteration of
xo under g converges to some £ X satisfying f&=p.

Lemma 3. Let f and g satisfy the hypotheses of Theorem 2. Then r=inf{[|fz.— fxnl:ln=1,
2, -} =0.

Lemma 4, Let f and g be as in Theorem 2. If there exists a £=X such that f&=g§&, then f§ is
the unique common fized point of f and g in X,

Proof of Theorem 2. From Lemma 4 it is sufficient to find a point & such that fé=gé&.

Let zy=X and let {fz,} be an f-iteration of =z, under g. By Lemma 3, r=0. Then we have
the following two cases (a) and (b).

(a) If there exists an n such that fz,=fz.,;, then fz,,,=gz,=fx and we are finished.

(b) Assume | fz,—fxu41l2#0 for each n. We wish to show that {fz,] is Cauchy. Suppose not.
Then there exists an ¢>0 and a subsequence {fr.,] of {fx,] such that |fz, —fz.qlls>2e.

From (3), there exists a § satisfying 0<{0<e for which (3) is true. Since r=0, there exists an N
such that m >N implies {|fTy— fZTmyill2<e/6. Let n;,>>N. We shall now show that there exists an
integer j satisfying n;<j<n,, such that

(1) e+08/3Lfzn— fz;llale+20/3.

First of all there exists value of j such that || fz,, — Sfzjll;>e+8/3. For || foa,— fz;|,<e+6/3. For
example, choose j=n;+1 and j==n;+2.

Pick j to be the smallest integer greater than =; such that | fz, —fz;ll.>>¢+8/3. Then |fz, —
Szialla<e+08/3 and | fz,, — fa;llo <N fan— frjoillat I fzso— frll2<le+8/3+8/6<e+25/3 and (4) is
established. Therefore from (3), llgz.—gz;le<le; i.e., [ fTns1—FfTjnlz<le. On the other hand,|fz,,
=Szl SN fZni— fZnirsllaH W fTniss— 2o+ | f2 41— f25]2<<8/6 + 6+ 8/6=e-+8/3, contradicting (4).

)



Therefore {fz,} is a Cauchy sequence with respect to ||+f,. Since |-, is equivalent to ||,
{fz,} is Cauchy sequence with respect to ||+}; and {rom Theorem 1, since (X, |+|;) is a Banach
space, there exists é=X such that [ fz,—&[,—0 as #z—oo, and also in view of fz,;,=gz,. We
have |lgz,—&|l;—0 as n—oo, Since f and g are continuous with respect to ||+};,, we have ||gfx,—
gél—0 and | fgz,— f&l;—>0 as n—oco, But since fg=gf, gé=fE=p. By Lemma 4, p is the unique
common fixed point of f and g. And we have the required conclusion.
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