A Common Fixed Point Theorem for Generalized Meir-Keeler type Contractive Conditions in the Saks Spaces.

By Kwon Bai Moon

1. Introduction.

Recently, some common fixed point theorems for commuting mappings in a space with two metric are proved by K. Iseki [1] and S.L. Singh [2].

In this paper, applying some common fixed point theorems of Park [3] and Park-Rhoades [4] for commuting mappings in complete metric space, we shall prove a common fixed point theorem in the Saks spaces.

2. Preliminaries.

Let X be a normed linear space. A real valued function $\|\cdot\|$ defined on X will be called a B-norm if it satisfies the following conditions:

- (1) ||x|| = 0 if and only if x = 0
- $(2) ||x+y|| \le ||x|| + ||y||$
 - (3) $\|\alpha x\| = |\alpha| \|x\|$, α : any real number.

Each real valued function | • | satisfying the above conditions (1), (2) and the following one:

(4) if the sequence $\{\alpha_n\}$ of real numbers converges to a real number α and $||x_n - x|| \to 0$ as $n \to \infty$, then $||\alpha_n x_n - \alpha x|| \to 0$ as $n \to \infty$, will be called a F-norm.

A two norm space is a linear space X with two norms, a B-norm $\|\cdot\|_1$ and a F-norm $\|\cdot\|_2$ and denoted by $(X, \|\cdot\|_1, \|\cdot\|_2)$.

If two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are defined on X and $x_n \in X$, $\|x_n\|_1 \to 0$ as $n \to \infty$ implies $\|x_n\|_2 \to 0$, then the norm $\|\cdot\|_1$ is called *non-weaker than* $\|\cdot\|_2$ in X. (denoted by $\|\cdot\|_2 \le \|\cdot\|_1$). If $\|\cdot\|_2 \le \|\cdot\|_1$ and $\|\cdot\|_1 \le \|\cdot\|_2$, then the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.

A sequence $\{x_n\}$ of points in a two norm space $(X, \|\cdot\|_1, \|\cdot\|_2)$ is said to be γ -convergent to x_0 in X if $\sup \|x_n\|_1 < \infty$ and $\lim_{n \to \infty} \|x_n - x_0\|_2 = 0$, and a sequence $\{x_n\}$ in a two-norm space is said to be γ -cauchy if $(x_{p_n} - x_{q_n} \to 0$ as $p_n, q_n \to \infty$.

A two norm space is called γ -complete if for every γ -Cauchy sequence $\{x_n\}$ in two norm space, there exists $x_0 \in X$ such that $x_n \xrightarrow{\gamma} x_0$.

Let X be a normed linear space cond $\|\cdot\|_1$ is a B-norm and $\|\cdot\|_2$ is a F-norm on X. Let $X_s = \{x \in X : \|x\|_1 < 1\}$ and define $d(x, y) = \|x - y\|_2$ for all x, y in X_s . Then d is a metric on X_s and the metric space (X_s, d) will be called a Saks set. If (X_s, d) is complete, it will be called a Saks space and denoted (X_s, d) by $(X, \|\cdot\|_1, \|\cdot\|_2)$.

In [5], W. Orlicz has proved the following:

Theorem 1. Let $(X_s, d) = (X, \|\cdot\|_1, \|\cdot\|_2)$ be a Saks space. Then the following statements are equivalent:

- (1) $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$ on X.
- (2) $(X, \|\cdot\|_1)$ is a Banch spaace and $\|\cdot\|_2 > \|\cdot\|_1$ on X.
- (3) $(X, \|\cdot\|_2)$ is a Frechet space and $\|\cdot\|_1 \ge \|\cdot\|_2$ on X.

3. Main Theorem.

Let f be a continuous selfmap of a Saks space $(X_s, d) = (X, \|\cdot\|_1, \|\cdot\|_2)$, $C_f = \{g \mid g : X \to X \text{ such that } fg = gf \text{ and } gX \subset fX\}$.

For $x_0 \in X$, the sequence $\{fx_n\}_{n=1}^{\infty}$ is called the *f*-iteration of x_0 under g, and is defined by $fx_n = gx_{n-1}$, $n=0,1,2,\cdots$ with the understanding that, if $fx_n = fx_{n+1}$ for some n, then $fx_{n+j} = fx_n$ for each $j \ge 0$.

Theorem 2. Let $(X_s, d) = (X, \|\cdot\|_1, \|\cdot\|_2)$ be a Saks space which $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$ on X. If two commuting mappings f and g from X into itself satisfy the following conditions:

- (1) $g \in C_f$
- (2) f and g are continuous with respect to || || 1.
- (3) For each $\varepsilon > 0$, there exists a $\delta > 0$ such that

 $\varepsilon \le \max \{ \|fx - fy\|_2, \|fx - gx\|_2, \|fy - gy\|_2, (\|fx - gy\|_2 + \|fy - gx\|_2)/2 \} < \varepsilon + \delta \text{ implies } \|gx - gy\|_2 < \varepsilon.$ Then f and g have a unique common fixed point p in X, and for each $x_0 \in X$, any f-iteration of x_0 under g converges to some $\xi \in X$ satisfying $f \xi = p$.

Lemma 3. Let f and g satisfy the hypotheses of Theorem 2. Then $r=\inf\{\|fx_n-fx_{n+1}\|_2|n=1, 2, \dots\}=0$.

Lemma 4. Let f and g be as in Theorem 2. If there exists a $\xi \in X$ such that $f\xi = g\xi$, then $f\xi$ is the unique common fixed point of f and g in X.

Proof of Theorem 2. From Lemma 4 it is sufficient to find a point ξ such that $f\xi = g\xi$.

Let $x_0 \in X$ and let $\{fx_n\}$ be an f-iteration of x_0 under g. By Lemma 3, r=0. Then we have the following two cases (a) and (b).

- (a) If there exists an n such that $fx_n=fx_{n+1}$, then $fx_{n+1}=gx_n=fx$ and we are finished.
- (b) Assume $||fx_n fx_{n+1}||_2 \neq 0$ for each n. We wish to show that $\{fx_n\}$ is Cauchy. Suppose not. Then there exists an $\varepsilon > 0$ and a subsequence $\{fx_n\}$ of $\{fx_n\}$ such that $||fx_n fx_{n+1}||_2 > 2\varepsilon$.

From (3), there exists a δ satisfying $0 < \delta < \varepsilon$ for which (3) is true. Since r=0, there exists an N such that m > N implies $||fx_m - fx_{m+1}||_2 < \varepsilon/6$. Let $n_j \ge N$. We shall now show that there exists an integer j satisfying $n_i < j < n_{i+1}$ such that

(4) $\varepsilon + \delta/3 \leq ||fx_{n_i} - fx_j||_2 < \varepsilon + 2\delta/3$.

First of all there exists value of j such that $||fx_{n_i}-fx_j||_2 \ge \varepsilon + \delta/3$. For $||fx_{n_i}-fx_j||_2 < \varepsilon + \delta/3$. For example, choose $j=n_i+1$ and $j=n_i+2$.

Pick j to be the smallest integer greater than n_i such that $||fx_{n_i}-fx_j||_2 \ge \varepsilon + \delta/3$. Then $||fx_{n_i}-fx_j||_2 \le \varepsilon + \delta/3$ and $||fx_{n_i}-fx_j||_2 \le ||fx_{n_i}-fx_{j-1}||_2 + ||fx_{j-1}-fx_j||_2 \le \varepsilon + \delta/3 + \delta/6 \le \varepsilon + 2\delta/3$ and (4) is established. Therefore from (3), $||gx_{n_i}-gx_j||_2 \le \varepsilon$; i.e., $||fx_{n_{i+1}}-fx_{j+1}||_2 \le \varepsilon$. On the other hand, $||fx_{n_i}-fx_j||_2 \le ||fx_{n_i}-fx_{n_{i+1}}||_2 + ||fx_{n_{i+1}}-fx_{j+1}||_2 + ||fx_{n_{i+1}}-fx_{j+1}||_2 \le \delta/6 + \varepsilon + \delta/6 = \varepsilon + \delta/3$, contradicting (4).

Therefore $\{fx_n\}$ is a Cauchy sequence with respect to $\|\cdot\|_2$. Since $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$, $\{fx_n\}$ is Cauchy sequence with respect to $\|\cdot\|_1$ and from Theorem 1, since $(X, \|\cdot\|_1)$ is a Banach space, there exists $\xi \in X$ such that $\|fx_n - \xi\|_1 \to 0$ as $n \to \infty$, and also in view of $fx_{n+1} = gx_n$. We have $\|gx_n - \xi\|_1 \to 0$ as $n \to \infty$. Since f and g are continuous with respect to $\|\cdot\|_1$, we have $\|gfx_n - g\xi\|_1 \to 0$ and $\|fgx_n - f\xi\|_1 \to 0$ as $n \to \infty$. But since fg = gf, $g\xi = f\xi = p$. By Lemma 4, p is the unique common fixed point of f and g. And we have the required conclusion.

References

- [1] K. Iseki: Fixed point theorems in complete metric space, *Math. Sem. Notes*, November (1974) 1-6.
- [2] S.L. Singh: A common fixed theorem in a space with two metrics, Pure and Appl. Math. Sci. XIV (1981) 35-37.
- [3] S. Park: On general contractive type conditions. J. Korean Math. Soc. 17 (1980), 33-42.
- [4] S. Park and B.E. Rhoades: Meir-Keeler type contractive conditions. *Math. Japonica* 26, No. 1 (1981) 13-20.
- [5] W. Orlicz: Linear operations in Saks space (I). Stud. Math. 11 (1950), 237-272.