A study on almost strongly θ -continuous functions

By Lee, Jae Don and Kwak Sung-Kon Daegu University, Daegu, Korea

I. Introduction

Recently many authors studied various forms of continuity on topological spaces.

Furthermore, they have defined a function h: $X \to Y$ from a topological space X into a topological space Y to be strongly θ -continuous [1] (resp. almost-continuous [3], θ -continuous [3], δ -continuous [2]) if for each $x \equiv X$ and each open neighborhood V of f(x), there exists an open neighborhood U of X such that $f(Cl(U)) \subset V$ (resp. $f(U) \subset Int(Cl(V))$, $f(Cl(U)) \subset Cl(V)$, $f(Int(Cl(U))) \subset Int(Cl(V))$).

The purpose of this paper is to introduce the concepts of almost strongly θ -continuous functions which are weaker than strongly θ -continuous functions and stronger than θ -continuous functions and δ -continuous functions, and to investigate some properties of them.

II. Basic concepts

Definition 2.1. A function $f: X \to Y$ is said to be almost strongly θ -continuous if for each $x \in X$ and each open neighborhood V of f(x), there exists an open neighborhood U of x such that $f(Cl(U)) \subset Int(Cl(V))$.

Theorem 2.2. The following diagram implications hold:

strongly θ -continuous $\downarrow \bigcirc$ almost strongly θ -continuous $\swarrow \bigcirc$ δ -continuous \leftarrow ···independent···· $\rightarrow \theta$ -continuous

Proof. These are obvious from definitions.

Example 2.3. The converse of ① need not be true. For let τ be the finite complement topology on R and let $f:(R,\tau)\to(R,\tau)$ be the identity function. Then, f is almost strongly θ -continuous, but it is not strongly θ -continuous. Because Int(Cl(U))=R for each open set U of (R,τ) .

Example 2.4. The converse of ② need not be true. For let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$ and let $f: (X, \tau) \to (X, \tau)$ be the identity function. Then, f is δ -continuous, but it is not almost strongly θ -continuous. Because $\{a, b\} = Cl(\{a\}) \not\subset Int(Cl(\{a\})) = \{a\}$.

Example 2.5. The converse of ③ need not be true. For the function f in example 2.4 is θ -continuous.

- In (6), A subset S of a topological space X is said to be regular open (resp. regular closed) if Int (Cl(S))=S (resp. Cl(Int(S))=S).
 - In (5), N.V. Velicko defined the followings:
- (i) The δ -closure (resp. θ -closure) of a subset A of a topological space X, denoted by $Cl_{\delta}(A)$ (resp. $Cl_{\theta}(A)$), is $\{x \in X | \text{every regular open neighborhood of } x \text{ meets } A\}$ (resp. $\{x \in X | \text{every closed neighborhood of } x \text{ meets } A\}$). The subset A is δ -closed (resp. θ -closed) if $Cl_{\delta}(A) = A$ (resp. $Cl_{\theta}(A) = A$).
- (ii) The δ -interior (resp. θ -interior) of a subset A of a topological space X, denoted by $Int_{\delta}(A)$ (resp. $Int_{\theta}(A)$), is $\{x \in X | \text{some regular open neighborhood of } x \text{ lies in } A\}$ (resp. $\{x \in X | \text{some closed neighborhood of } x \text{ lies in } A\}$). The subset A is δ -open (resp. θ -open) if $Int_{\delta}(A) = A$ (resp. $Int_{\theta}(A) = A$). Of course both δ -open sets and θ -open sets are open, and both δ -closed sets and θ -closed sets are closed. Furthermore, the complement of a δ -open(resp. θ -open) set is δ -closed(resp. θ -closed) and the complement of a δ -closed(resp. θ -closed) set is δ -open(resp. θ -open).

Theorem 2.6. For any function $f: X \rightarrow Y$ the followings are equivalent.

- (a) f is almost strongly θ -continuous.
- (b) For each $x \in X$ and each regular open set V containing f(x), there exists an open set U containing x such that $f(Cl(U)) \subset V$.
- (c) For every regular open set V of Y, $f^{-1}(V)$ is θ -open in X.
- (d) For every regular closed set F of Y, $f^{-1}(F)$ is θ -closed in X.
- (e) The inverse image of a δ -closed set is θ -closed.
- (f) The inverse image of a δ -open set is θ -open.

Proof. (a) \rightleftharpoons (b), (c) \rightleftharpoons (d), (e) \rightleftharpoons (f): These proofs are clear from definitions.

- (b) \Rightarrow (c): Let V be a regular open set of Y and let $x \in f^{-1}(V)$, then $f(x) \in V$. By (b), there exists an open set U containing x such that $f(Cl(U)) \subset V$. Hence $Cl(U) \subset f^{-1}(V)$, and so $x \in Int_{\theta}$ $(f^{-1}(V))$. This shows that $f^{-1}(V) \subset Int_{\theta}(f^{-1}(V))$. Since $f^{-1}(V) \supset Int_{\theta}(f^{-1}(V))$ is clear, $f^{-1}(V) = Int_{\theta}(f^{-1}(V))$ Therefore $f^{-1}(V)$ is θ -open.
- (c) \Rightarrow (f): Let V be δ -open in Y. Then for each $y \in V$, there exists a regular open set W_y containing y such that $W_y \subset V$. Thus, $V = \bigcup_{y \in V} W_y$. This shows that $f^{-1}(V) = f^{-1}(\bigcup_{y \in V} W_y) = \bigcup_{y \in V} f^{-1}(W_y)$. But by (c), each $f^{-1}(W_y)$ is θ -open. Hence $f^{-1}(V)$ is θ -open.
- (f) \Rightarrow (b): Let $x \in X$ and let V be a regular open set of Y containing f(x). Then V is δ -open, and hence by (f) $f^{-1}(V)$ is a θ -open set containing x. Thus, there exists an open set U containing x such that $Cl(U) \subset f^{-1}(V)$. Therefore $f(Cl(U)) \subset f(f^{-1}(V)) \subset V$.
- **Lemma** 2.7. A space X is Hausdorff if and only if for any x_1 , x_2 in X, there exist open sets U and V containing x_1 and x_2 respectively such that $Int(Cl(U)) \cap Int(Cl(V)) = \emptyset$.

Proof. $U \cap V = \emptyset$ implies that $Int(Cl(U)) \cap V = \emptyset$. Hence $Int(Cl(U)) \cap Int(Cl(V)) = \emptyset$.

Theorem 2.8.

Let $f: X \rightarrow Y$ be an injective almost strongly θ -continuous function and let Y be Hausdorff. Then X is Urysohn.

Proof. Let $x_1 \neq x_2$ belong to X. Then $f(x_1) \neq f(x_2)$. Since Y is Hausdorff, by lemma 2.7 there

exist disjoint regular open sets V_1 and V_2 containing $f(x_1)$ and $f(x_2)$ respectively. Thus, there exist open sets U_1 and U_2 containing x_1 and x_2 respectively such that $f(Cl(U_1)) \subset V_1$ and $f(Cl(U_2)) \subset V_2$ because f is almost strongly θ -continuous. It follows that $Cl(U_1) \cap Cl(U_2) = \emptyset$, from which we conclude that X is Urysohn.

Theorem 2.9. If $f: X \rightarrow Y$ is almost strongly θ -continuous and $g: Y \rightarrow Z$ is δ -continuous, then the composition $g \circ f: X \rightarrow Z$ is almost strongly θ -continuous.

Proof. Let V be regular open in Z. Then by theorem 2.2 in [2] $g^{-1}(V)$ is δ -open in Y so that $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is θ -open in X by theorem 2.6(f). Thus, $g \circ f$ is almost strongly θ -continuous by theorem 2.6(c).

Definition 2.10. A space X is said to be almost regular[4] if for each $x \in X$ and each open neighborhood U of x there exists an open neighborhood V of x such that $V \subset Cl(V) \subset Int(Cl(U))$.

Theorem 2.11. For a function $f: X \rightarrow Y$, the following statements are true:

- (a) If X is almost regular and f is δ -continuous, then f is almost strongly θ -continuous.
- (b) If Y is almost regular and f is continuous, then f is almost strongly θ-continuous.
- **Proof.** (a) Let $x \in X$ and let V be a regular open set of Y containing f(x). Since f is δ -continuous, there exists an open set U_0 containing x such that $f(Int(Cl(U_0))) \subset V$. Since X is almost regular, there exists an open set U containing x such that $U \subset Cl(U) \subset Int(Cl(U_0))$. Hence $f(Cl(U)) \subset f(Int(Cl(U_0))) \subset V$. This shows that f is almost strongly θ -continuous.
- (b) Let $x \in X$ and let V be an open set of Y containing f(x). Since Y is almost regular, there exists an open set W containing f(x) such that $W \subset Cl(W) \subset Int(Cl(V))$. Since f is continuous, $x \in f^{-1}(W) \subset Cl(f^{-1}(W)) \subset f^{-1}(Cl(W)) \subset f^{-1}(Int(Cl(V)))$.

Now let $U=f^{-1}(W)$. Then $f(Cl(U)) \subset f(f^{-1}(Int(Cl(V)))) \subset Int(Cl(V))$. This shows that f is almost strongly θ -continuous.

References

- P.E. Long and L.L. Herrington, Strongly θ-continuous functions, Jour. of the Korean Math. Soc.,
 No. 1 (1981) pp. 21-28.
- 2. T. Noiri, On δ-continuous functions, Jour. of the Korean Math. Soc., 16, No. 2 (1980) pp. 161-166.
- 3. M.K. Singal and A.R. Singal, Almost-continuous mapping, Yokohama Math. Jour. 16 (1968) pp. 63-73.
- 4. M.K. Singal and Asha Mathur, On nearly-compact spaces, Boll. Un. Ital. (4) 2 (1969) pp. 702-710.
- 5. N.V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. (2) 78 (1968) pp. 103-118.
- 6. S. Williard, General topology, Addison-Wesley Publ. Co. Reading, Mass. 1970.