On Almost-Continuous Functions onto R₁ Spaces # By Sin Min Kang Gyeongsang National University, Jinju, Korea ## 1. Introduction R₁ spaces were introduced in 1961 by A.S. Davis [1]. In 1975, W. Dunham [3] investigated several properties of R₁ spaces and proved that R₁ spaces are weaker than Hausdorff spaces. Recently, using induced maps and natural maps, C. Dorsett [2] obtained many additional properties of R₁ spaces. In this paper, we shall give a generalization of a result obtained by C. Dorsett (2): If f is a continuous open function from a space (X, \mathcal{F}) onto a space (Y, \mathcal{L}) , then (Y, \mathcal{L}) is R_1 if and only if $\{(x_1, x_2) | Cl(\{f(x_1)\}) = Cl(\{f(x_2)\})\}$ is closed in $\mathbb{X} \times \mathbb{X}$. #### 2. Definitions and Preliminaries Throughout this paper, spaces always mean topological spaces. Let S be a subset of a space. The closure of S and the interior of S are denoted by Cl(S) and Int(S), respectively. **Definition 2.1.** A space (X, \mathcal{F}) is R_1 [1] iff for $x_1, x_2 \in X$ such that $Cl(\{x\}) \neq Cl(\{y\})$, there exist open sets U_1 and U_2 such that $Cl(\{x_1\}) \subset U_1$, $Cl(\{x_2\}) \subset U_2$ and $U_1 \cap U_2 = \phi$. **Definition 2.2.** Let (X,\mathcal{F}) be a space and let R be the equivalence relation on X defined by x_1Rx_2 iff $Cl(\{x_1\})=Cl(\{x_2\})$. Then the T_0 -identification space [6] of (X,\mathcal{F}) is (X^*,\mathcal{F}^*) , where X^* is the set of equivalence classes of R and \mathcal{F}^* is the decomposition topology on X, which is T_0 . **Definition 2.3.** If f is a function from a space (X, \mathcal{F}) onto a space (Y, \mathcal{L}) , then the function $f^*: (X^*, \mathcal{F}^*) \to (Y^*, \mathcal{L}^*)$ defined by $f^*(x^*) = (f(x))^*$ is the induced map from (X^*, \mathcal{F}^*) onto (Y^*, \mathcal{L}^*) determined by f [2]. In [2] and [3], C. Dorsett and W. Dunham proved the following theorems, respectively. **Theorem 2.4.** The natural map $P_X: (X, \mathcal{T}) \to (X^*, \mathcal{T}^*)$ is continuous, closed, open, onto and $P_X^{-1}(P_X(U)) = U$ for all $U \in \mathcal{T}$. **Theorem 2.5.** A space (X, \mathcal{I}) is R_1 if and only if (X^*, \mathcal{I}^*) is Hausdorff. # 3. The Main Theorems Now, we are ready to give the main theorems. **Theorem 3.1.** If f is an almost-continuous function from a space (X, \mathcal{F}) onto a R_1 space (Y, \mathcal{L}) , then $\{(x_1, x_2) | Cl(\{f(x_1)\}) = Cl(\{f(x_2)\})\}$ is closed in $X \times X$. **Proof.** Assume that f is onto. Then f^* is onto by [2]. Let $x \in X$ and let V be an open subset of Y containing f(x). Then there exists an open subset U of X containing x such that $f(U) \subset \operatorname{Int}(\operatorname{Cl}(V))$ because f is almost-continuous [5]. Put $U = P_X^{-1}(U^*)$ for any open subset U^* of X^* containing x^* . Then $f^*(U^*) = P_Y(f(P_X^{-1}(U^*))) \subset P_Y(\operatorname{Int}(\operatorname{Cl}(V)))$. By Theorem 2.4, $P_Y(\operatorname{Int}(\operatorname{Cl}(V))) \subset \operatorname{Int}(\operatorname{Cl}(P_Y(V)))$. Thus we have $f^*(U^*) \subset \operatorname{Int}(\operatorname{Cl}(P_Y(V)))$. Hence f^* is almost-continuous Suppose that (Y, \mathcal{L}) is a R_1 space. Then (Y^*, \mathcal{L}^*) is a Hausdorff space by Theorem 2.5. Since f^* is an almost-continuous function from (X^*, \mathcal{I}^*) onto a Hausdorff space (Y^*, \mathcal{L}^*) , $\{(x_1^*, x_2^*) \cap f^*(x_1^*) = f^*(x_2^*)\}$ is closed in $X^* \times X^*$ by [4]. This shows that $\{(x_1, x_2) \mid \operatorname{Cl}(\{f(x_1)\}) = \operatorname{Cl}(\{f(x_2)\})\}$ is closed in $X \times X$ by [2]. **Theorem 3.2.** If f is an open function from a space (X, \mathcal{F}) onto a space (Y, \mathcal{L}) and if $\{(x_1, x_2) | Cl(\{f(x_1)\}) = Cl(\{f(x_2)\})\}$ is closed in $X \times X$, then (Y, \mathcal{L}) is a R_1 space. **Proof.** Suppose that $\{(x_1, x_2) | Cl(\{f(x_1)\}) = Cl(\{f(x_2)\})\}$ is closed in $X \times X$. Then $\{(x_1^*, x_2^*) f^*(x_1^*) = f^*(x_2^*)\}$ is closed in $X^* \times X^*$ by [2]. Since P_Y and f are open, we have $f^*(U^*) = P_Y(f(P_X^{-1}(U^*))) \in \mathbb{Z}^*$ for all $U^* \in \mathcal{F}^*$. Hence f^* is open. Moreover, since f^* is onto, (Y^*, \mathbb{Z}^*) is a Hausdorff space. This shows that (Y, \mathbb{Z}) is a R_1 space. The following Corollary 3.3 follows immediately from Theorem 3.1 and 3.2. Corollary 3.3. ([2]) If f is a continuous open function from a space (X,\mathcal{F}) onto a space (Y,\mathcal{L}) then (Y,\mathcal{L}) is R_1 if and only if $\{(x_1,x_2)|Cl(\{f(x_1)\})=Cl(\{f(x_2)\})\}$ is closed in $X\times X$. ## References - [1] A. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Mati Monthly, 68 (1961), 886-893. - [2] C. Dorsett, T₀-identification spaces, and R₁ spaces, Kyungpook Math. J., 18 (1978), 167-174. - (3) W. Dunham, Weakly Hausdorff spaces, Kyungpook Math. J., 15 (1975), 41-50. - [4] T. Noiri, Between continuity and weak-continuity, Bollettino U.M.I., 9 (1974), 647-654. - [5] M.K. Singal and A.R. Singal, Almost-continuous mappings, Yokohama Math. J., 16 (1968) 63-73. - [6] S. Willard, General Topology, Addison-Wesley, 1970.