# On Almost-Continuous Functions onto R<sub>1</sub> Spaces

# By Sin Min Kang Gyeongsang National University, Jinju, Korea

## 1. Introduction

R<sub>1</sub> spaces were introduced in 1961 by A.S. Davis [1]. In 1975, W. Dunham [3] investigated several properties of R<sub>1</sub> spaces and proved that R<sub>1</sub> spaces are weaker than Hausdorff spaces. Recently, using induced maps and natural maps, C. Dorsett [2] obtained many additional properties of R<sub>1</sub> spaces.

In this paper, we shall give a generalization of a result obtained by C. Dorsett (2): If f is a continuous open function from a space  $(X, \mathcal{F})$  onto a space  $(Y, \mathcal{L})$ , then  $(Y, \mathcal{L})$  is  $R_1$  if and only if  $\{(x_1, x_2) | Cl(\{f(x_1)\}) = Cl(\{f(x_2)\})\}$  is closed in  $\mathbb{X} \times \mathbb{X}$ .

#### 2. Definitions and Preliminaries

Throughout this paper, spaces always mean topological spaces. Let S be a subset of a space. The closure of S and the interior of S are denoted by Cl(S) and Int(S), respectively.

**Definition 2.1.** A space  $(X, \mathcal{F})$  is  $R_1$  [1] iff for  $x_1, x_2 \in X$  such that  $Cl(\{x\}) \neq Cl(\{y\})$ , there exist open sets  $U_1$  and  $U_2$  such that  $Cl(\{x_1\}) \subset U_1$ ,  $Cl(\{x_2\}) \subset U_2$  and  $U_1 \cap U_2 = \phi$ .

**Definition 2.2.** Let  $(X,\mathcal{F})$  be a space and let R be the equivalence relation on X defined by  $x_1Rx_2$  iff  $Cl(\{x_1\})=Cl(\{x_2\})$ . Then the  $T_0$ -identification space [6] of  $(X,\mathcal{F})$  is  $(X^*,\mathcal{F}^*)$ , where  $X^*$  is the set of equivalence classes of R and  $\mathcal{F}^*$  is the decomposition topology on X, which is  $T_0$ .

**Definition 2.3.** If f is a function from a space  $(X, \mathcal{F})$  onto a space  $(Y, \mathcal{L})$ , then the function  $f^*: (X^*, \mathcal{F}^*) \to (Y^*, \mathcal{L}^*)$  defined by  $f^*(x^*) = (f(x))^*$  is the induced map from  $(X^*, \mathcal{F}^*)$  onto  $(Y^*, \mathcal{L}^*)$  determined by f [2].

In [2] and [3], C. Dorsett and W. Dunham proved the following theorems, respectively.

**Theorem 2.4.** The natural map  $P_X: (X, \mathcal{T}) \to (X^*, \mathcal{T}^*)$  is continuous, closed, open, onto and  $P_X^{-1}(P_X(U)) = U$  for all  $U \in \mathcal{T}$ .

**Theorem 2.5.** A space  $(X, \mathcal{I})$  is  $R_1$  if and only if  $(X^*, \mathcal{I}^*)$  is Hausdorff.

# 3. The Main Theorems

Now, we are ready to give the main theorems.

**Theorem 3.1.** If f is an almost-continuous function from a space  $(X, \mathcal{F})$  onto a  $R_1$  space  $(Y, \mathcal{L})$ , then  $\{(x_1, x_2) | Cl(\{f(x_1)\}) = Cl(\{f(x_2)\})\}$  is closed in  $X \times X$ .

**Proof.** Assume that f is onto. Then  $f^*$  is onto by [2]. Let  $x \in X$  and let V be an open subset

of Y containing f(x). Then there exists an open subset U of X containing x such that  $f(U) \subset \operatorname{Int}(\operatorname{Cl}(V))$  because f is almost-continuous [5]. Put  $U = P_X^{-1}(U^*)$  for any open subset  $U^*$  of  $X^*$  containing  $x^*$ . Then  $f^*(U^*) = P_Y(f(P_X^{-1}(U^*))) \subset P_Y(\operatorname{Int}(\operatorname{Cl}(V)))$ . By Theorem 2.4,  $P_Y(\operatorname{Int}(\operatorname{Cl}(V))) \subset \operatorname{Int}(\operatorname{Cl}(P_Y(V)))$ . Thus we have  $f^*(U^*) \subset \operatorname{Int}(\operatorname{Cl}(P_Y(V)))$ . Hence  $f^*$  is almost-continuous Suppose that  $(Y, \mathcal{L})$  is a  $R_1$  space. Then  $(Y^*, \mathcal{L}^*)$  is a Hausdorff space by Theorem 2.5. Since  $f^*$  is an almost-continuous function from  $(X^*, \mathcal{I}^*)$  onto a Hausdorff space  $(Y^*, \mathcal{L}^*)$ ,  $\{(x_1^*, x_2^*) \cap f^*(x_1^*) = f^*(x_2^*)\}$  is closed in  $X^* \times X^*$  by [4]. This shows that  $\{(x_1, x_2) \mid \operatorname{Cl}(\{f(x_1)\}) = \operatorname{Cl}(\{f(x_2)\})\}$  is closed in  $X \times X$  by [2].

**Theorem 3.2.** If f is an open function from a space  $(X, \mathcal{F})$  onto a space  $(Y, \mathcal{L})$  and if  $\{(x_1, x_2) | Cl(\{f(x_1)\}) = Cl(\{f(x_2)\})\}$  is closed in  $X \times X$ , then  $(Y, \mathcal{L})$  is a  $R_1$  space.

**Proof.** Suppose that  $\{(x_1, x_2) | Cl(\{f(x_1)\}) = Cl(\{f(x_2)\})\}$  is closed in  $X \times X$ . Then  $\{(x_1^*, x_2^*) f^*(x_1^*) = f^*(x_2^*)\}$  is closed in  $X^* \times X^*$  by [2]. Since  $P_Y$  and f are open, we have  $f^*(U^*) = P_Y(f(P_X^{-1}(U^*))) \in \mathbb{Z}^*$  for all  $U^* \in \mathcal{F}^*$ . Hence  $f^*$  is open. Moreover, since  $f^*$  is onto,  $(Y^*, \mathbb{Z}^*)$  is a Hausdorff space. This shows that  $(Y, \mathbb{Z})$  is a  $R_1$  space.

The following Corollary 3.3 follows immediately from Theorem 3.1 and 3.2.

Corollary 3.3. ([2]) If f is a continuous open function from a space  $(X,\mathcal{F})$  onto a space  $(Y,\mathcal{L})$  then  $(Y,\mathcal{L})$  is  $R_1$  if and only if  $\{(x_1,x_2)|Cl(\{f(x_1)\})=Cl(\{f(x_2)\})\}$  is closed in  $X\times X$ .

## References

- [1] A. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Mati Monthly, 68 (1961), 886-893.
- [2] C. Dorsett, T<sub>0</sub>-identification spaces, and R<sub>1</sub> spaces, Kyungpook Math. J., 18 (1978), 167-174.
- (3) W. Dunham, Weakly Hausdorff spaces, Kyungpook Math. J., 15 (1975), 41-50.
- [4] T. Noiri, Between continuity and weak-continuity, Bollettino U.M.I., 9 (1974), 647-654.
- [5] M.K. Singal and A.R. Singal, Almost-continuous mappings, Yokohama Math. J., 16 (1968) 63-73.
- [6] S. Willard, General Topology, Addison-Wesley, 1970.