The relationship between $\dim_{\mathbb{A}}(E)$ and $\dim_{\mathbb{B}}(E)$

By Park, Chan Bong Won Kwang University, Iri, Korea

Introduction

Let B be a finite integral extension of a commutative ring A with identity and E a finite B-module. The purpose of this note is to study the relationship between $\dim_A(E)$ and $\dim_B(E)$ where dim means the Krull's one. The ring and dim used here will be commutative with identity and Krull's one respectively.

1. Preliminary results

Proposition 1. Let B be integral over a ring A. If b is an ideal of B and $a=A\cap b$, then B/b is integral over A/a.

Proof. If $x \in B$, we have, say $x^n + a_1 x^{n-1} + \dots + a_n = 0$ with $a_i \in A$ if and only if $\bar{x}^n + \bar{a}_1 \bar{x}^{n-1} + \dots + \bar{a}_n = 0 \pmod{b}$. Therefore B/b is integral over A/a.

Proposition 2. Let A, B be as in proposition 1. Then the pair A, B satisfies incomparable and going-up.

Proof. see ((2) p. 29).

Proposition 3. Let the rings A, B satisfy going-up and incomparable. Then dimension of B equals the dimension of A.

Proof. see ((2), p. 32).

Corollary. Let A, B be as in proposition 1. Then dim(A/a) equals dim(B/b).

Proof. It is clear.

Proposition 4. Let A be a ring and E an A-module. The following results hold:

- i) $E = \sum E_i \Rightarrow supp(E) = \bigcup supp(E_i)$.
- ii) If E is finitely generated, then supp(E) = V(ann E).

(and therefore a closed subset of spec(A)).

Proof. i) $p \in \text{supp}(E) \Rightarrow E_p = (\sum E_i)_p \neq 0$ implies that $(E_i)_p \neq 0$ for at least one *i*. Hence $p \in \bigcup \text{supp}(E_i)$. Reverse inclusion is obvious.

ii) Let $\{x_1, x_2, \dots, x_n\}$ be generators of E and $E_i = Ax_i$. Then $A/a_i = E_i$ where $a_i = \operatorname{ann}(x_i)$. Therefore $\operatorname{supp}(E_i) = V(a_i)$. By i) $\operatorname{supp}(E) = \bigcup_{i=1}^n V(a_i) = V(a_i) = V(a_i) = V(a_i)$.

2. Main theorem

Theorem. Let A, B, E be as in introduction. Then $\dim_{\Lambda}(E)$ equals $\dim_{B}(E)$. **Proof.** $\dim_{B}(E) = \sup \{\dim B/P | P \in \operatorname{spec}(B), E_{P} \neq 0\}$. Let $n=\dim_B(E)$ and $P \in \operatorname{spec}(B)$ be such that $E_P \neq 0$ and dim B/P = n. Put $p=P \cap A$, then is an integral extension of A/p, hence $\dim B/P = \dim A/p$ by corollary.

Moreover E_P is a localization of $E_P = (A - p)^{-1}E$, therefore $E_P \neq 0$, so $\dim_A E \geq n = \dim_B E$.

To prove the converse let $p \in \operatorname{spec}(A)$ be such that $\dim(A/p) = \dim_A(E)$ and $E_P \neq 0$. We hav prove that there exists $P \in \operatorname{spec}(B)$ lying over p such that $E_P \neq 0$. Replacing A, B, E by A_p, B_p , we may suppose that (A, p) is a local ring and $E \neq 0$. Then the prime ideals of B lying over exactly the maximal ideals of B, and since $\operatorname{supp}_B(E)$ is a closed subset by proposition 4 to exists a maximal ideal P such that $E_P \neq 0$.

Corollary. Let A, B, E be as in theorem, \mathcal{C}_B the category of the finite B-modules and dim: \mathcal{C}_B to be the Krull dimension. Then the followings are satisfied:

- i) $dim_A(B/\mathfrak{M})=0$ where \mathfrak{M} is a maximal ideal of B.
- ii) if $0 \rightarrow E' \rightarrow E \rightarrow E'' \rightarrow 0$ is an exact sequence of \mathcal{E}_B then $\dim_B(E) = \max(\dim_A(E'), \dim_A(E''))$
- iii) if (A, \mathfrak{M}) is a local ring and $0 \rightarrow E \rightarrow E \rightarrow E/mE \rightarrow 0$ where $m \in \mathfrak{M}$ is an exact sequence of then $\dim_A(E) = 1 + \dim_A(E/mE)$.

Proof. i), ii) are clear by theorem and for Proof of iii) see ((3)).

3. References

- (1) Atiyah, M.F., Macdonald, I.G., Introduction to commutative algebra, addison-Wesley, 1969.
- (2) Kaplansky, I., Commutative rings, Univ. of Chicago, 1974.
- (3) Park, C.B., A remark on the Krull dimension, Journal of Korean Math. Soc., 1981.
- (4) Park, Jong-Geun & Park, C.B., On the dimension of rings and modules, Dep. of Math. Bug National University, 1981.7.