A Note on the Semi-Continuity in Topological Space.

Han Chun Ho Gang-weon University, Chuncheon, Korea

Abstract

In this paper, we investigate the properties of the semi-continuous functions on the first axiom space, n-th product space, pseudo-metric space, and proximity space. Counterexample is used when the converse of the theorem is not hold.

Introduction.

Definition 1. A set A in a topological space X will be termed semi-open (will be written s.o.) if and only if there exists an open set O such that $O \subset A \subset cl(O)$ where cl(O) denotes the closure operator of O.

Definition 2. Let $f: X \rightarrow X^*$ be single valued (continuity is not assumed) where X and X^* are topological spaces. Then $f: X \rightarrow X^*$ is termed *semi-continuous* (will be written *s.c.*) if and only if, for open O^* in X^* , $f^{-1}(O^*) \subseteq S.O.(X)$, where S.O.(X) denotes the class of all semi-open sets in X.

Theorems

Theorem 1. Let $f: X \rightarrow X^*$ be continuous where X and X^* are topological spaces. Then f is semi-continuous.

Example 1. Converse of Thm. 1 is not hold.

Let $X=X^*=[0,1]$ and $f:X\to X^*$ as follows,

$$f(x) = \begin{cases} 1, & \text{if } 0 \le x \le \frac{1}{2} \\ 0, & \text{if } \frac{1}{2} < x \le 1 \end{cases}$$

Then f is semi-continuous but not continuous.

Theorem 2. Let $f: X \to X^*$ be a single valued function, X and X^* are topological spaces. Then $f: X \to X^*$ is s.c. iff for $f(p) \in O^*$, there exists an $A \in S.O.(X)$ such that $p \in A$ and $f(A) \subset O^*$.

Proof. Let O^* be open in X and $p \in f^{-1}(O^*)$. Then $f(p) \in O^*$ and thus there exists an $A_p \in S.O.$ (X) such that $p \in A_p$ and $f(A_p) \subset O^*$, Then $p \in A_p \subset f^{-1}(O^*)$ and $f^{-1}(O^*) = \bigcup_{p \in (f^{-1}O^*)} A_p$. For some O_p , $O_p \subset A_p \subset cl(O_p)$ since $A_p \in S.O.(X)$. Then $\bigcup_p O_p \subset \bigcup_p A_p \subset \bigcup_p cl(O_p) \subset cl(\bigcup_p O_p)$. Hence let $O = \bigcup_p O_p$, $f^{-1}(O^*) \in S.O.(X)$.

On the other other hand, let $f(p) \equiv O^*$. Then $p \equiv f^{-1}(O^*) \equiv S.O.(X)$, since $f: X \rightarrow X^*$ is s.c. Let $A = f^{-1}(O^*)$. Then $p \equiv A$ and $f(A) \subseteq O^*$.

Thorem 3. Let $f: X \rightarrow X^*$ be s.c. and X^* a first axiom space. Let P be the set of points of discontinuity of f. Then P is of first category.

Proof. Let $p \in P$. Then there exists an O_{ip}^* in the countable open basis for X^* such that $p \in O$ open in X implies that $f(O) \not\subset O_{ip}^*$. Then there exists an $A_{ip} \in S.O.(X)$ such that $p \in A_{ip}$ and $f(A_{ip}) \subset O_{ip}^*$ by Thm. 2. But $A_{ip} = O_{ip} \cup B_{ip}$ where $B_{ip} \subset cl(O_{ip}) - O_{ip}$ is nowhere dence set. Hence $p \notin O_{ip}$ and thus $p \in B_{ip}$. It follows $P \subset \bigcup_{p \in P} B_{ip}$ and since $\bigcup_{p \in P} B_{ip}$ is of first category, P is of first category.

Example 2. Converse of Thm. 3 is not hold generally.

Let X=[0,1] and $X^*=[0,1]$. Let

$$f(x) = \begin{cases} 0, & \text{if } x \text{ is irrational} \\ 1/q, & \text{if } x \text{ is rational } (x = p/q, p \text{ and } q \text{ are relativel prime}) \end{cases}$$

Then f is continuous at the irrationals and discontinuous at the rationals. Hence the sets are of the first category. But $f: X \to X^*$ is not s.c. since $f\left(\frac{1}{2}, 1\right)$ is a subset of the rationals and thus is not s.o.

Theorem 4. Let $f_i: X_i \to X_i^*$ be s.c. for $i=1, 2, \dots, n$. Let $f: \prod_{i=1}^n X_i \to \coprod_{i=1}^n X_i^*$ as follows; $f(x_1, x_2, \dots, x_n) = (f(x_1), f_2(x_2), \dots, f_n(x_n))$. Then $f: \prod_{i=1}^n X_i \to \prod_{i=1}^n X_i^*$ is s.c.

Proof. Let $\prod_{i=1}^n O_i^* \subset \prod_{i=1}^n X_i^*$ where O_i^* is open in X_i^* for i=1,2,n. Then $f^{-1}(\prod_{i=1}^n O_i^*) = \prod_{i=1}^n f^{-1}(O_i^*)$. But $f_i^{-1}(O_i^*)$ are s.o. in X_i for $i=1,2,\cdots,n$, and thus $\prod_{i=1}^n (O_i^*)$ is s.o. in $\prod_{i=1}^n X_i$. Now if O^* is any open set in $\prod_{i=1}^n X_i^*$, then $f^{-1}(O^*) = f^{-1}(\bigcup O_\alpha^*)$ where O_α^* is of the form $\prod_{i=1}^n O_{\alpha i}^*$. Then $f^{-1}(O^*) = \bigcup f^{-1}(O_\alpha^*)$ which is s.o. since $f^{-1}(O_\alpha^*)$ is s.o. by the above argument.

Theorem 5. Let $h: X \to \prod_{i=1}^n X_i$ be s.c. where X and X_i for $=1, 2, \cdots n$ are topological spaces. Let $f_i: X \to X_i$ as follows; $h(x) = (x_1, x_2, \cdots x_n)$ for $x \in X$ and $x_i \in X_i$. Let $f_i(x) = x$. Then $f_i: X \to X_i$ is s.c. for $i=1, \cdots 2, n$.

Proof. It is enough to show only $f_1: X \to X_1$ is s.c. Let O_1 be open in X_1 . $O_1 \times \prod_{i=2}^n X_i$ is open in $\prod_{i=1}^n X_i$ and $h^{-1}(0_1 \times \prod_{i=2}^n X_i)$ is s.o. in X. But $f_1^{-1}(0_1) = h^{-1}(0_1 \times \prod_{i=2}^n X_i)$ and thus $f_1: X \to X_1$ is s.c.

Example 3. Converse of Thm. 5 is not hold generally. Let $h: X \rightarrow X_1 \times X_2$ and $f_i: X \rightarrow X_i$ for i = 1, 2. Let $X = X_1 = X_2 = \{0, 1\}$. Let $f_1: X \rightarrow X_1$ and $f_2: X \rightarrow X_2$ as follows;

$$f_1(x) = \begin{cases} 1, & \text{if } 0 \le x \le \frac{1}{2} \\ 0, & \text{if } \frac{1}{2} < x \le 1 \end{cases}$$

$$f_2(x) = \begin{cases} 1, & \text{if } 0 \le x < \frac{1}{2} \\ 0, & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Then f_1 and f_2 are s.c., but

 $h(x) = (f_1(x), f_2(x))$: $X \rightarrow X_1 \times X_2$ is not s.c. for $S_{1/2}(1,0)$ is open in $X_1 \times X_2$, but $h^-(S_{1/2}(1,0)) = \left(\frac{1}{2}\right)$ which is not s.o. in X. $S_{1/2}(1,0)$ denotes the spherical neighborhood of (1,0), radius $\frac{1}{2}$.

Remark. A s.c. function of a s.c. function is not s.c. in general, in fact,

Example 4. Let $X=X_1=X_2=\{0,1\}$. Let $f_1: X\to X_1$ and $f_2: X\to X_2$ as follows;

$$f_1(x) = \begin{cases} x, & \text{if } 0 \le x \le \frac{1}{2} \\ 0, & \text{if } \frac{1}{2} < x \le 1 \end{cases} \qquad f_2(x) = \begin{cases} 0, & \text{if } 0 \le x < \frac{1}{2} \\ 1, & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$

Then f_1 and f_2 are s.c. but $f_2 \cdot f_1$ is not s.c.

Example 5. Let $X=X^*=[0,1]$ and $f_n:X\to X^*$ be defined as $f_n(x)=x^n$ for $n=1,2,\cdots$ Then $f_0:X\to X$ is the limit of the sequence where

$$f_0(x) = \begin{cases} 0, & \text{if } 0 \le x < 1 \\ 1, & \text{if } x = 1. \end{cases}$$

But f_0 is not s.c. For $\left(\frac{1}{2},1\right]$ is open in X^* , but $f_0\left(\frac{1}{2},1\right)=(1)$ which is not s.o. in X. Thus the limit of a sequence of s.c. functions is not s.c. in general.

Theorem 6. Let $f_n: P \to P^*$, where P and P^* are pseudo-metric spaces with pseudo-metrics d and d^* , be s.c. for $n=1, \dots 2$, and let $f_0: P \to P^*$ be the uniform limit of $\{f_n\}$. Then $f_0: P \to P^*$ is s.c.

Proof. Let $f_0(x) \in O^*$. Then $f_0(x) \in S_\eta^*(f_0(x)) \subset O^*$ for some $\eta > 0$. There exists then an n^* such that $d^*(f_n(y), f_0(y)) < \frac{\eta}{2}$ for all $y \in P$. Then $d^*(f_n^*(x), f_0(x)) < \frac{\eta}{2}$ and thus $(f_n^*(x) \in S_{\eta/2}^*(f_0(x)) \subset O^*$. Since f_n^* is s.c. there exists, by Thm 2, an A s.o. such that $x \in A$ and $f_n^*(A) \subset S_{\eta/2}^*(f_0(x))$. The proof will be complete when we show that $f_0(A) \subset O^*$. Let $y \in A$. Then $d^*(f_0(y), f_0(x)) \le d^*(f_0(y), f_n^*(y)) + d^*(f_n^*(y), f_0(x)) < \frac{\eta}{2} + \frac{\eta}{2} = \eta$. This shows $f_0(A) \subset S_\eta^*(f_0(x)) \subset O^*$.

Theorem 7. A proximity mapping $f:(X,\delta_1)\to (Y,\delta_2)$ is s.c. with respect to $\mathcal{F}(\delta_1)$ and $\mathcal{F}(\delta_2)$.

Proof. Note that a function $f:(X,\delta_1)\to (Y,\delta_2)$ is proximity mapping iff $A\delta_1B$ implies $f(A)\delta_2f(B)$, where (X,δ_1) and (Y,δ_2) are two proximity spaces. $\mathcal{F}(\delta_1)$ and $\mathcal{F}(\delta_2)$ are topologies on X and Y respectively which are induced by a proximity on X and Y respectively. This result follows easily from the fact that $x\delta_1A$ implies $f(x)\delta_2f(A)$. Therefore, f is continuous with respect to $\mathcal{F}(\delta_1)$. Hence f is semicontinuous with respect to $\mathcal{F}(\delta_1)$ and $\mathcal{F}(\delta_2)$.

이 논문에서는 Norman Levin의 논문에서 나타난 semi-open의 개념을 사용하여 정의된 semi-continuous의 여러가지 성질을 조사하였고, semi-continuity를 위상공간의 first-axiom공간 pseudo-metric공간과 n-th product공간까지 조사하였으며, semi-continuous함수의 합성과 함수열의 극한과 proximity공간의 mapping에 대하여 조사하였다. 그리고 정리의 역이 성립하지 않는 경우 반례를 들어 보였다.

References

- 1. Gustave Choquet, Topology, Academic Press, New York, 1966.
- 2. James Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
- 3. John L. Kelley, General Topology, Van Nostrand, Prinston, N.J., 1955.
- 4. Norman L. Levine, Amer. Math. Monthly, 70, 36, 1963.
- 5. Stephan Willard, General Topology, Addison-Wesley Publishing Company, 1970.