DOI QR코드

DOI QR Code

Acid-Base Equilibria and Related Properites of Chitosan

  • Joon-Woo Park (Department of Chemistry, College of Natural Science, Ewha Womans University) ;
  • Kyung-Hee Choi (Department of Chemistry, College of Natural Science, Ewha Womans University) ;
  • Kwang-hee Koh Park (Department of Chemistry, College of Natural Science, Chung-Nam National University)
  • 발행 : 1983.04.20

초록

The $pK_{a}$ of $-NH_{3}^{+}$ group of chitosan in water was 6.2, while that of D-glucosamine-HCl, monomer of chitosan, was found to be 7.8. The difference of $pK_{a}$ values between chitosan and D-glucosamine was attributed to the strong electrostatic interaction between $-NH_{3}^{+}$ groups in chitosan. The apparent binding constant of $Cu^{2+}$ to D-glucosamine was estimated to be $1{\times}10^{4}$. For chitosan, no significant binding of $Cu^{2+}$ to the polymer was observed when pH < 5, but strong cooperative binding was observed near pH 5.1. The mechanism of such cooperativity was proposcd. Chitosan in solution exhibited typical polyelectrolytic behaviors: viscosity increases with increased amount of charged group, and decreases with addition of salt. The concentration dependence of viscosity was measured, and the Huggins parameters and intrinsic viscosity were calculated at various ionic strength. The results were interpreted in terms of molecular properties of the chitosan molecule.

키워드

참고문헌

  1. Natural Chelating Polymers R. A. A. Muzzarelli
  2. Chitin R. A. A. Muzzarelli
  3. Chem. Pharm. Bull. v.13 Z. Tamura;M. Miyazaki;T. Suzuki
  4. Bull. Kor. Chem. Soc. v.1 J. W. Park;D. C. Mukherjee
  5. Proc. First Int. Conf. Chitin/Chitosan(NTIS PB-285640) L. J. Filar;M. G. Wirick
  6. J. Polymer Sci. v.16 P. J. Cheng;H. K. Schachman
  7. J. Amer. Chem. Soc. v.64 M. L. Huggins
  8. Rec. Trav. Chim. v.71 D. T. F. Pals;J. J. Hermans
  9. Rec. Trav. Chim. v.71 D. T. F. Pals;J. J. Hermans
  10. J. Amer. Chem. Soc. v.73 P. J. Flory;T. G. Fox, Jr.
  11. Biopolymers v.6 R. L. Cleland
  12. Chitin R. A. A. Muzzarelli
  13. Carbohydr. Res. v.18 K. Nagasawa;Y. Tohira;T. Inoue;N. Tanoura
  14. CRC Rev. Biochem. v.8 B. Chakrabarti;J. W. Park
  15. Proc. First Int. Conf. Chitin/Chitosan(NTIS PB-285640)
  16. Food Prod. Dev. v.11 W. A. Bough
  17. Acta Oceanogr. Taiwan v.7 T. Hung;S. L. Han
  18. M. S. thesis, KAIS M. Kong
  19. Natural Chelating Polymers R. A. A. Muzzarelli
  20. Chitin R. A. A. Muzzarelli
  21. J. Polymer Sci. v.2 A. Katchalsky;P. Spitinik

피인용 문헌

  1. Effects of pretreatments and modifiers on electrochemical properties of carbon paste electrodes vol.9, pp.5, 1997, https://doi.org/10.1002/elan.1140090502
  2. Reversible thermothickening of aqueous solutions of polycations from natural origin vol.113, pp.1, 1983, https://doi.org/10.1002/masy.19971130113
  3. (Stability of SnO2 dispersions containing L-Arginine or chitosan) vol.46, pp.300, 2000, https://doi.org/10.1590/s0366-69132000000400008
  4. Effect of Chemical Crosslinking on the Swelling and Shrinking Properties of Thermal and pH-Responsive Chitosan Hydrogels vol.3, pp.10, 2003, https://doi.org/10.1002/mabi.200300011
  5. Oxidation and Transamination of the 3″-Position of UDP-N-Acetylglucosamine by Enzymes from Acidithiobacillus ferrooxidans vol.279, pp.24, 2004, https://doi.org/10.1074/jbc.m400596200
  6. Gelation time and degradation rate of chitosan-based injectable hydrogel vol.42, pp.1, 1983, https://doi.org/10.1007/s10971-006-9007-1
  7. Synthesis and characterisation of the 3-amino-derivative of γ-cyclodextrin, showing receptor ability and metal ion coordination properties vol.49, pp.32, 1983, https://doi.org/10.1016/j.tetlet.2008.05.093
  8. Supramolecular Interactions in Chitosan Gels vol.2009, pp.7, 1983, https://doi.org/10.1002/ejoc.200801103
  9. Polysaccharide drug delivery systems based on pectin and chitosan vol.27, pp.1, 1983, https://doi.org/10.1080/02648725.2010.10648153
  10. Symmetric pH-Dependent Swelling and Antibacterial Properties of Chitosan Brushes vol.27, pp.20, 1983, https://doi.org/10.1021/la202616u
  11. Reversible swelling of chitosan and quaternary ammonium modified chitosan brush layers: effects of pH and counter anion size and functionality vol.22, pp.37, 1983, https://doi.org/10.1039/c2jm34316a
  12. Sodium-phosphorylated chitosan/zinc oxide complexes and evaluation of their cytocompatibility: An approach for periodontal dressing vol.27, pp.4, 2012, https://doi.org/10.1177/0885328211408371
  13. Developing a chitosan supported imidazole Schiff-base for high-efficiency gene delivery vol.4, pp.3, 1983, https://doi.org/10.1039/c2py20494k
  14. Bio-inspired catechol conjugation converts water-insoluble chitosan into a highly water-soluble, adhesive chitosan derivative for hydrogels and LbL assembly vol.1, pp.7, 2013, https://doi.org/10.1039/c3bm00004d
  15. A fiber-optic pH sensor based on polyelectrolyte multilayers embedded with gold nanoparticles vol.25, pp.7, 2014, https://doi.org/10.1088/0957-0233/25/7/075102
  16. Process Design Aspects for Reaction‐Integrated Adsorption in Multi‐Enzymatic Catalysis* vol.38, pp.10, 1983, https://doi.org/10.1002/ceat.201500166
  17. An accurate coarse-grained model for chitosan polysaccharides in aqueous solution vol.12, pp.7, 1983, https://doi.org/10.1371/journal.pone.0180938
  18. Preparation of Oxidized and Grafted Chitosan Superabsorbents for Urea Delivery vol.26, pp.2, 1983, https://doi.org/10.1007/s10924-017-0981-x
  19. Rheo-Kinetic Study of Sol-Gel Phase Transition of Chitosan Colloidal Systems vol.10, pp.1, 1983, https://doi.org/10.3390/polym10010047