NMR Chemical Shift for 4d* System (II). Calculation of the Pseudo Contact Shift for a 4d¹ System in a Strong Crystal Field Environment of Octahedral Symmetry Sangwoon Ahn!, Se Woong Oh* and Euisuh Park Department of Chemitry, Jeonbug National University, Jeonju 520, Korea (Received August 24, 1982) NMR shift arising from the electron orbital angular momentum and the electron spin dipolar-nuclear spin angular momentum interactions has been investigated for a $4d^1$ system in a strong crystal field of octahedral symmetry. To examine the NMR shift for a $4d^1$ system in a strong crystal field of octahedral symmetry, we derive a general expression for $\Delta B/B$ using a nonmultipole expansion technique. From this expression all the multipolar terms are determined. For the $4d^1$ system in a strong crystal field of octahedral symmetry the exact solution for NMR shift. ΔB , is compared with the multipolar results. $\Delta B/B$ for the $4d^1$ system is also compared with that for the $3d^1$ system. It is found that the $1/R^7$ term contributes dominantly to the NMR shift. However, there is good agreement between the nonmultipole and multipolar results for R-values larger than 0.2 nm for the $4d^1$ system but for R-values larger than 0.4 nm for the $3d^1$ system. #### 1. Introduction For a decade considerable interest has been focussed on the NMR shifts arising from 3dⁿ and 4fⁿ systems ¹ and in the use of lanthanide ions as NMR shift reagents ². The NMR shift in 3dⁿ and 4fⁿ paramagnetic systems has been interpreted as arising through the Fermi contact interaction between the electron bearing nucleus and the NMR nucleus ³. For this case a simplified form of the expression for the NMR shift, AB, was derived (4), $$\frac{\Delta B}{B} = -\frac{a \,\mu_B}{3g_N \,\mu_N} \left\{ \frac{2}{\lambda} (g - 1) (g - 2) + (g - 1) g \,\frac{J(J + 1)}{kT} \right\}$$ (1) where $$g=1+\{J(J+1)-L(L+1)+S(S+1)\}/[2J(J+1)]$$ $\lambda=\pm\zeta/2S$ Here ζ is the spin-orbit coupling constant and only the $^{(2S+1)}L_J$ ground state was considered with no bonding effects. In the other cases ⁵ the NMR shifts have been interpreted as arising dominantly through pseudo contact interactions. The expression for NMR shifts first given by McConnel and Robertson⁶, adopting the dipolar approximation, was extended by Kurland and McGravey⁷ in terms of the magnetic susceptibility components, $\chi_{\alpha\alpha}$, $$\frac{AB}{B} = -\frac{1}{3R^3} \left\{ \left[\chi_{xx} - \frac{1}{2} (\chi_{xx} + \chi_{yy}) \right] (3\cos^2 \theta - 1) + \frac{3}{2} (\chi_{xx} - \chi_{yy}) \sin^2 \theta \cos 2\phi \right\}$$ (2) This expression has been used extensively in interpreting the pseudo contact shift in paramagnetic 3dⁿ and 4fⁿ systems. Using the dipolar approximation expressed in terms of the magnetic susceptibility components, Bleaney derived an equation for the NMR shift *. \(\Delta \text{B} \), which may be written as ⁴ $$\frac{\Delta B}{B} = \frac{N \,\mu_B^2 \,g^2 (2l+1-4S) \left[3X(X-1)-4J(J+1) \,(L+1)\right]}{24 \,\sqrt{5} \,(2l+1) \,(2l-1) \,(2L-1) \,\sqrt{\pi} \,R^3 \,k^2 \,T^2} \times (1-3\cos^2\theta) \,a_2^\theta \tag{3}$$ $$X=J(J+1)+L(L+1)-S(S+1)$$ In equation (3), l=3, a_2° is a crystal field parameter, N is the Avogadro constant. This equation can be applied to $4f^*$ systems. As far as we are aware no previous attempt has been made to determine the exact solution of the NMR shift arising from the 4d-electron angular momentum and the 4d-electron spin dipolar-nuclear spin angular momentum interactions and, in addition, to compare the results with the multipolar approximations which may be expressed as 9 $$\frac{AB}{B} = \sum_{L=2}^{K} \sum_{M=0}^{L} (A_{LM} \cos M\phi + B_{LM} \sin M\phi) P_L{}^M (\cos \theta) / R^{L+1}$$ (4) where K=2(2l+1) for a specific l-electron, $P_L{}^M(\cos\theta)$, the associated Legendre polynomials and the coefficients A_{LM} and B_{LM} measure the anisotropy in the multipolar magnetic susceptibilities of the molecule. The purpose of this work is to develop a method for calculating the NMR shift for a 4d¹ system in a strong crystal field environment of octahedral symmetry, adopting the nonmultipole expansion method 10 and to compare this exact results with the multipolar NMR results. This enable us to explore the limitations of the multipolar expansion method in interpreting the NMR shifts in 4d¹ transition metal complexes. We also compare the NMR shift for a 4d¹ system with that of a 3d¹ system in a strong crystal field environment of octahedral symmetry. ### 2. Theory The hamiltonian representing the various interactions we shall consider in this paper may be expressed as $$\mathcal{R} = -\frac{\hbar^2}{2m_e} \nabla^2 - \frac{Ze^2}{4\pi e_0 r} + V(r) + Jl \cdot S$$ $$+ \mu_B (l + 2S) \cdot B + \mathcal{R}_{hf}$$ (5) where V(r) is a crystal field term and $$\mathcal{R}_{hf} = \frac{\mu_0}{4\pi} g_{N} \mu_{B} \mu_{N} \left\{ \frac{2I_{N} \cdot I}{r_{N}^{3}} + g_{S} \left[\frac{3(r_{N} \cdot S)r_{N} \cdot I}{r_{N}^{5}} - \frac{S \cdot I}{r_{N}^{3}} \right] \right\}$$ (6) Here r and r_N are electron radius vector about the electronbearing atom and the nucleus with nuclear spin angular mo- ^{*} Department of chemistry, Mock Po National College, Mock Po 580, Korea mentum I, respectively. The quantity B is the applied magnetic field and the other terms have their usual meaning. In this paper g_S , the free electon g value, is taken to be equal to exactly 2. Since we are examining the interaction of a 4d electron centered at O in a strong crystal field of octahedral symmetry (refer to 1st series of this work,), we shall express the regired wave functions as $$|4d_{yz}\rangle = \left(\frac{\beta^9}{21\pi}\right)^{\frac{1}{2}}yzr\exp(-\beta r)$$ $$|4d_{xz}\rangle = \left(\frac{\beta^9}{21\pi}\right)^{\frac{1}{2}}xzr\exp(-\beta r)$$ $$|4d_{xy}\rangle = \left(\frac{\beta^9}{21\pi}\right)^{\frac{1}{2}}xyr\exp(-\beta r)$$ (7) where $\beta = 2.8481/a_0^{-11}$. To determine the NMR shift of a 4d¹ system in liquid solution, the principal values σ_{xx} , σ_{yy} and σ_{zz} of the NMR screening tensor, σ_z , are determined by considering the magnetic field, B_z , interaction as parallel to the x, y and z axes and averaged assuming a Boltzmann distribution. The contribution to the NMR shift, ΔB_z , is given by $$\Delta B = \frac{1}{3} B(\sigma_{xx} + \sigma_{yy} + \sigma_{zz}) \tag{8}$$ where $$\sigma_{\alpha\alpha} = \left(\frac{\partial^2 < \mathcal{R}_{hf} >}{\partial \mu_{\alpha} \partial B_{\alpha}}\right)_{\mu = B = 0} \tag{9}$$ $$m = \sigma_{\mu} \mu_{\mu} \mathbf{I}$$ The term $\langle \mathcal{R}_{hf} \rangle$ refers to the Boltzmann average of the hyperfine interaction represented by equation (6), $$\langle \mathcal{X}_{hf} \rangle = \frac{\sum_{i} \langle \phi_{i} | \mathcal{X}_{hf} | \phi_{i} \rangle \exp(-E_{i}/kT)}{\sum_{i} \exp(-E_{i}/kT)}$$ (10) where ψ_i are the eigenfunctions of the spin-orbit coupling and magnetic field interactions and E_i the corresponding eigenvalues. To evaluate the hyperfine interaction matrix elements, $\langle \psi_i | \mathcal{H}_{hf} | \psi_i \rangle$, we adopt the calculated hyperfine integrals for 4d orbitals ¹². In a strong crystal field of octahedral symmetry, the NMR shift for a 4d¹ system is given by $$\frac{\Delta B}{B} = -\frac{\mu_0}{4\pi} \frac{\mu_R^2}{kT} \left\{ \frac{d(R) + [1 - \exp(3\zeta/2kT)(kT/\zeta)S(R)]}{1 + 2\exp(3\zeta/2kT)} \right\}$$ (11) where $$\begin{split} d\left(\mathbf{R}\right) &= \frac{8\sqrt{\pi}}{147} \ Y_{00}(\theta, \Phi) E(t) \\ &+ \frac{11520}{t^5} \sqrt{\frac{\pi}{21}} \Big[\frac{1}{2} \sqrt{\frac{7}{3}} \ Y_{40}(\theta, \Phi) \\ &+ \frac{1}{2} \sqrt{\frac{5}{6}} \left(Y_{4-4}(\theta, \Phi) + Y_{44}(\theta, \Phi) \right] H(t) \\ &+ \frac{15206400}{7t^7} \sqrt{\frac{\pi}{26}} \Big[\frac{1}{2\sqrt{2}} \ Y_{60}(\theta, \Phi) \\ &- \sqrt{\frac{7}{4}} \left(Y_{6-4}(\theta, \Phi) + Y_{64}(\theta, \Phi) \right] J(t) \end{split}$$ $$S(\mathbf{R}) = -\frac{40\sqrt{\pi}}{441} Y_{00}(\Theta, \Phi) M(t)$$ $$-\frac{5120}{t^5} \sqrt{\frac{\pi}{21}} \left[\frac{1}{2} \sqrt{\frac{7}{3}} Y_{40}(\Theta, \Phi) + \frac{1}{2} \sqrt{\frac{5}{6}} Y_{4-4}(\Theta, \Phi) + Y_{44}(\Theta, \Phi) \right] N(t)$$ $$-\frac{10137600}{7t^7} \sqrt{\frac{\pi}{26}} \left[\frac{1}{2\sqrt{2}} Y_{60}(\Theta, \Phi) - \frac{\sqrt{7}}{4} (Y_{6-4}(\Theta, \Phi) + Y_{64}(\Theta, \Phi)) \right] J(t)$$ $$E(t) = \beta^3 e^{-t} \left(\frac{1}{3} \frac{t^6}{6!} + \sum_{n=0}^{5} \frac{t^n}{n!} \right)$$ $$H(t) = \beta^3 \left\{ 1 - e^{-t} \left(\frac{8}{9} \frac{t^{11}}{11!} + \sum_{n=0}^{10} \frac{t^n}{n!} \right) \right\}$$ $$J(t) = \beta^3 \left\{ 1 - e^{-t} \left(\frac{13}{11} \frac{t^{13}}{13!} + \sum_{n=0}^{12} \frac{t^n}{n!} \right) \right\}$$ $$M(t) = \beta^3 e^{-t} \left(-\frac{2}{15} \frac{t^6}{6!} + \sum_{n=0}^{5} \frac{t^n}{n!} \right)$$ $$N(t) = \beta^3 e^{-t} \left(\frac{4}{3} \frac{t^{11}}{11!} \right)$$ Since this expression for $\Delta B/B$ is applicable for all values of R we may determine from equation (11) the case when $R\rightarrow O$, namely, $$\frac{\Delta B}{B} \rightarrow \frac{4\beta^3 \,\mu_R^2}{441kT} \left\{ \frac{3 - 5\left[1 - \exp\left(3\zeta/2\,kT\right)\right]kT/\zeta}{1 + 2\exp\left(3\zeta/2\,kT\right)} \right\} \frac{\mu_0}{4\pi} \tag{13}$$ When R is large, the terms in equation (11) involving the polar coordinates of the NMR nucleus may be expressed in terms of $1/R^5$ and $1/R^7$, $$d(\mathbf{R}) = \frac{1}{R^5} \frac{360}{\beta^2} \sqrt{\frac{\pi}{21}} \left\{ \frac{1}{2} \sqrt{\frac{7}{3}} Y_{40}(\theta, \Phi) + \frac{1}{2} \sqrt{\frac{5}{6}} [Y_{4-4}(\theta, \Phi) + Y_{44}(\theta, \Phi)] \right\}$$ $$+ \frac{1}{R^7} \frac{118800}{7\beta^4} \sqrt{\frac{\pi}{26}} \left\{ \frac{1}{2\sqrt{2}} Y_{60}(\theta, \Phi) - \frac{\sqrt{7}}{4} [Y_{6-4}(\theta, \Phi) + Y_{64}(\theta, \Phi)] \right\}$$ $$S(\mathbf{R}) = -\frac{1}{R^7} \frac{79200}{7\beta^4} \sqrt{\frac{\pi}{26}} \left\{ \frac{1}{2\sqrt{2}} Y_{60}(\theta, \Phi) - \frac{\sqrt{7}}{4} [Y_{6-4}(\theta, \Phi) + Y_{64}(\theta, \Phi)] \right\}$$ $$(14)$$ In equation (12), (13) and (14), the symmetry of the system is reflected in the analytical form for $\Delta B/B$, namely, only those combinations of the spherical harmonics $Y_{Im}(\Theta, \Phi)$ that transform as the irreducible representation A_1a_1 of the octahedral group occur. ### 3. Results and Discussion The calculated NMR shifts along the x, y and z axes for a $4d^1$ system in a strong crystal field environment of octahedral symmetry are listed in Table 1. Here we choose β = $2.8481/a_0$, the spin-orbit coupling constant as 1030 cm^{-1} . These parameter values are similar to those for Mo^{5+} ion. The temperature is taken as T=300 K. As shown in Table 1, $\Delta B/B$ for specific R-values along the $\langle 100 \rangle$, $\langle 010 \rangle$ and $\langle 001 \rangle$ axes for a $4d^1$ system in a strong crystal field environments of octahedral symmetry are consistent with each other. This result represents an isotropic NMR shielding for a $4d^1$ system TABLE 1: 4B/B(ppm) for Specific R-values for a 4d¹ System along the x, y and z axes in a Strong Crystal Field Environment of Octabedral Symmetry | R (nm) | $\Delta B/B$ (ppm) | | | | | |----------|--------------------|-----------------|------------|--|--| | A (till) | ⟨100⟩ axis | ⟨010⟩ axis | ⟨001⟩ axis | | | | 0.05 | -92044.3724 | -92044.3724 | 92044.3724 | | | | 0.1 | -879.2927 | -879.2927 | -879,2927 | | | | 0.15 | -60.9222 | -60.9233 | -60.9233 | | | | 0.2 | -8.4320 | -8.4320 | 8.4320 | | | | 0.25 | -1.7866 | -1.7866 | -1.7866 | | | | 0.3 | -0.5036 | -0 .5036 | -0.5036 | | | | 0.35 | -0.1732 | -0.1732 | -0.1732 | | | | 0.4 | -0.0689 | -0.0689 | -0.0689 | | | | 0.45 | -0.0307 | -0.0307 | -0.0307 | | | | 0.5 | -0.0149 | -0.0149 | ~0.0149 | | | TABLE 2: $\Delta B/B$ (ppm) for Specific R-Values for a 4d¹ System in a Strong Field Environment of Octahedral Symmetry | R (nm) | $\Delta B/B$ (ppm) | | | | | |----------|--------------------|-------------|--------------|--|--| | ac (and) | ⟨100⟩ axis | ⟨110⟩ axis | (111) axis | | | | 0.05 | 92044,3724 | 147206.3179 | -162486.2417 | | | | 0.1 | -879.2927 | 1216.9444 | -1401.0489 | | | | 0.15 | -60.9233 | 91.3902 | -100.1516 | | | | 0.2 | -8.4320 | 13.3953 | -14.5252 | | | | 0.25 | -1.7869 | 2.8466 | -3.0761 | | | | 0.3 | -0.5036 | 0.7963 | -0.8561 | | | | 0.35 | -0.1732 | 0,2712 | -0.2897 | | | | 0.4 | -0.0689 | 0.1069 | -0.1132 | | | | 0.45 | -0.0307 | 0.0469 | 0.0493 | | | | 0.5 | 0.0149 | 0.0225 | 0.0234 | | | Parameters used; $\zeta = 1030 \text{cm}^{-1}$, $\beta = 2.8481/a_0$ and T = 300 K. TABLE 3: A Comparison of the Fxact values of $\Delta B/B$ (ppm) using Equation (11) with the Multipolar Terms for Specific R-values along $\langle 100 \rangle$ Axis | R (nm) | $\Delta B/B$ (ppm) | | | | | | |--------|--------------------|------------------|--------------------------------|----------------------|--|--| | | 1/R ⁵ | I/R ⁷ | sum of all
multipolar terms | exact from eq. (11). | | | | 0.05 | -219.5464 | -91038.5742 | -91258.1206 | -92044.3724 | | | | 0.1 | -48.7723 | -775.3416 | -824.1140 | -879.2927 | | | | 0.15 | -2.8949 | - 56.6456 | -59.4506 | -60.9233 | | | | 0.2 | -0.1837 | -8.2277 | -8.4114 | 8.4320 | | | | 0.25 | -0.0410 | -1.7456 | -1.7866 | 1.7869 | | | | 0.3 | -0.0161 | -0.487 6 | -0.5036 | -0.5036 | | | | 0.35 | -0.0074 | -0.1657 | -0.1732 | -0.1732 | | | | 0.4 | -0.0038 | -0.065t | -0.0689 | -0.0689 | | | | 0.45 | -0.0021 | -0.0285 | -0.0307 | -0.0307 | | | | 0.5 | -0.0012 | -0.0136 | -0.0149 | 0.0149 | | | along the x, y and z axes in a strong crystal field of octahedral symmetry. The calculated NMR shifts, $\Delta B/B$, along the $\langle 100 \rangle$, $\langle 110 \rangle$ and $\langle 111 \rangle$ axes for specific R-values are tabulated in Table 2. As expected, the NMR shift, $\Delta B/B$, decreases in magnitude rapidly as R increases. Along the $\langle 100 \rangle$ and $\langle 111 \rangle$ axes, $\Delta B/B$ is negative for all values of R, while along the $\langle 110 \rangle$ axis, $\Delta B/B$ is positive. The NMR results for a 4d¹ system using equation (11) and the corresponding multipolar terms, $1/R^5$ and $1/R^7$, given by TABLE 4: A Comparison of $\Delta B/B(ppm)$ using Equation(11) with the Multipolar Terms for Specific R-values Along the $\langle 110 \rangle$ Axis. | <i>R</i> (nm) | ∆B/B (ppm) | | | | | | |---------------|-------------------|-------------|----------------------------------|-------------------------|--|--| | | l/R^5 | l/R^7 | sum of all mul-
tipolar terms | exact from
eq. (11). | | | | 0.05 | 54.8866 | 147937.6831 | 147992.5697 | 147206.3179 | | | | 0.1 | 12.1931 | 1259.9301 | 1272,1232 | 1216.9444 | | | | 0.15 | 0.7237 | 92.0492 | 92.7729 | 91.3902 | | | | 0.2 | 0.0459 | 13.3700 | 13.4159 | 13.3953 | | | | 0.25 | 0.0103 | 2.8366 | 2,8469 | 2,8466 | | | | 0.3 | 0.0040 | 0.7923 | 0.7963 | 0.7963 | | | | 0.35 | 0.0019 | 0.2693 | 0.2712 | 0.2712 | | | | 0.4 | 0.0010 | 0.1058 | 0.1067 | 0.1067 | | | | 0.45 | 0.0005 | 0.0464 | 0.0469 | 0.0469 | | | | 0.5 | 0.0003 | 0.0222 | 0.0225 | 0.0225 | | | Parameters used; $\zeta = 1030 \text{ cm}^{-1}$, $\beta = 2.8481/a_0$ and T = 300 K. TABLE 5: A Comparison of $\Delta B/B$ (ppm) using Equation (11) with the Multioplar Terms for Specific *R*-values along the $\langle 111 \rangle$ Axis | <i>R</i> (nm) | $\Delta B/B$ (ppm) | | | | | | |---------------|--------------------|------------------|----------------------------------|------------------------|--|--| | | I/R ⁵ | I/R ⁷ | sum of all mul-
tipolar terms | exact from
eq. (11) | | | | 0.05 | 146.3643 | -161846.3342 | -161699,9899 | -162486.2417 | | | | 0.1 | 32.5149 | -1378.3851 | -1345.8702 | 1401.0 \$89 | | | | 0.15 | 1.9300 | -100.7034 | -98.7734 | -100.1561 | | | | 0.2 | 0.1224 | 14.6270 | 14.5046 | -14.5252 | | | | 0.25 | 0.0274 | -3.1033 | 3.0759 | -3.0761 | | | | 0.3 | 0.0107 | -0.8668 | -0.8561 | -0,8561 | | | | 0.35 | 0.0050 | -0.2946 | -0.2897 | -0.2897 | | | | 0.4 | 0.0025 | -0.1157 | -0.1132 | -0.1132 | | | | 0.45 | 0.0014 | -0.0507 | -0.0493 | -0.0493 | | | | 0.5 | 0.0008 | -0.0243 | -0.0234 | -0.0234 | | | Parameters used; $\zeta = 1030 \text{ cm}^{-1}$, $\beta = 2.8481/a_0$ and T = 300 K. TABLE 6: AB/B (ppm) for Specific R-values for a 3d¹ System in a Strong Crystal Field Environment of Octahedral Symmetry | R (nm) | $\Delta B/B$ (ppm) | | | | | | |--------|----------------------|--------------|------------|--------------|--|--| | | ⟨100⟩ axis | <001⟩ axis | ⟨110⟩ axis | (111) axis | | | | 0.05 | 783171.9483 | -783171.9483 | 1154326.66 | -1187769.763 | | | | 0.1 | -8824.8011 | -8824.8011 | 9118.2366 | -8378.6768 | | | | 0.15 | -935.3065 | -935.3065 | 572.9484 | -403.5502 | | | | 0.2 | 215.3654 | -215.3654 | 107.8626 | -23.6982 | | | | 0,25 | -67.9963 | -67.9963 | 33,4199 | 5,8437 | | | | 0.3 | 26.0932 | -26.0932 | 12.3354 | 5.6731 | | | | 0.35 | 11.54 9 4 | -11.5493 | 5.0923 | 3.6171 | | | | 0.4 | -5.7325 | -5.7325 | 2.3340 | 2.2015 | | | | 0.45 | -3.1050 | -3.1050 | 1,1761 | 1.3570 | | | | 0.5 | -1.8008 | -1.8008 | 0.6421 | 0.8592 | | | Parameters used; $\zeta = 154$ cm⁻¹, $\beta = 4/3a_0$ and T = 300 K. equation (4) are shown in Table 3, 4 and 5. A comparison of the multipolar terms with the exact solution given by equation (11) show that the first multipolar term, $1/R^5$ in this case, is inadequate to describe the NMR shift for all values of R. When the $1/R^7$ term is included, there is good agreement between the nonmultipole and multipolar results for R values larger than 0.2 nm. It is interesting to note that along the $\langle 111 \rangle$ axis, the $1/R^5$ term gives values opposite in sign to that of the $1/R^7$ term. In addition, the results show that the NMR TABLE 7: A Comparison of the Exact Values of $\Delta B/B$ (ppm) with the Multipolar Terms for Specific R-values for a 3d1 System in a strong Crystal field of O_6 Symmetry. (a) Along (100) axis | R (nm) | $\Delta B/B$ (ppm) | | | | | | |--------|--------------------|-------------|---------------------------------|--------------|--|--| | | 1/R ⁵ | | sum of all mul-
ipolar terms | exact values | | | | 0.05 | -698476.9775 | -83197.2342 | -781674.2117 | -783171.9483 | | | | 1.0 | - 5488.3463 | -2828.9029 | -8317.2492 | -8824.8011 | | | | 0.15 | -345.7988 | -480.4265 | -826,2253 | -935.3065 | | | | 0.2 | 55.9411 | -141.1062 | 197.0472 | -215.3654 | | | | 0.25 | -14.3482 | -50.9938 | -65.3420 | -67.9863 | | | | 0.3 | 4.5484 | -21.1516 | -25.7045 | 26.0493 | | | | 0.35 | -1.6416 | -9.8659 | 11.5076 | 11.5494 | | | | 0.4 | -0.6595 | -5.0682 | -5.7277 | -5.7325 | | | | 0.45 | -0.2913 | -2.8131 | -3.1044 | -3.1050 | | | | 0.5 | -0.1396 | -1.6612 | -1.8008 | -1.8008 | | | (b) Along the (110) axis | R(nm) | $\Delta B/B(ppm)$ | | | | | | |-------|-------------------|------------------|----------------------------------|--------------|--|--| | | 1/R ⁵ | 1/R ⁷ | Sum of all mul-
tipolar terms | Exact values | | | | 0.05 | 1135025.088 | 20799.3085 | 1155824.397 | 1154326.66 | | | | 0.1 | 8918.5628 | 707.2257 | 9625,7885 | 9118.2366 | | | | 0.15 | 561.9230 | 120.1066 | 682,0296 | 572.9484 | | | | 0.2 | 90.9042 | 35.2765 | 126.1807 | 107.8626 | | | | 0.25 | 23,3158 | 12.7484 | 36.0642 | 33.4199 | | | | 0.3 | 7.3912 | 5.2890 | 12.6804 | 12.3354 | | | | 0.35 | 2.6676 | 2.4665 | 5.1341 | 5,0923 | | | | 0.4 | 1.0717 | 1.2670 | 2.3388 | 2.3340 | | | | 0.45 | 0.4733 | 0,7033 | 1.1766 | 1.1761 | | | | 0.5 | 0.2269 | 0.4153 | 0.6421 | 0,6421 | | | | R(nm) | ΔB/B(ppm) | | | | | | |-------|--------------------------|--------------------------|----------------------------------|--------------|--|--| | | 1/ R ⁵ | 1/ R ⁷ | Sum of all mul-
tipolar terms | Exact values | | | | 0.05 | -1241736,849 | 55464.8228 | -1186272.026 | -1187769.763 | | | | 0.1 | -9757.0602 | 1885.9353 | -7871.1249 | -8378.6768 | | | | 0.15 | -614.7534 | 320.2843 | -294,4690 | -403.5502 | | | | 0.2 | -99,4508 | 94.0708 | -5.3799 | -23.6982 | | | | 0.25 | -25.5079 | 33.9959 | -8.4880 | 5.8437 | | | | 0.3 | -8.0861 | 14.1040 | 6.0179 | 5.6731 | | | | 0.35 | -2.9184 | 6.5773 | 3.6589 | 3.6171 | | | | 0.4 | -1.1725 | 3.3788 | 2,2063 | 2.2015 | | | | 0.45 | -0.5179 | 1.8754 | 1.3576 | 1.3570 | | | | 0.5 | -0,2482 | 1.1074 | 0.8593 | 0.8592 | | | Parameters used; $\zeta = 154$ cm⁻¹, $\beta = 4/3a_0$ and T = 300 K. shift arising from the electron angular momentum, and the electron spin dipolar-nuclear spin angular momentum interactions in a 4d1 system in a strong crystal field environment of octahedral symmetry is large for significant distances between the NMR nucleus and 4d-electron bearing atom. For distances less than 0.35 nm it should not be neglected. The calculated NMR shifts for a 3dl system in a strong crystal field environment of octahedral symmetry, using the equation derived by Golding and Stubbs (13), are listed in Table 6 and 7. Here we choose $\beta = 4/3a_0$, the spin-orbit coupling constant as 154 cm⁻¹. These parameter values correspond to those for Ti^{3+} ion. The temperature is chosen as T=300 K. As shown in Table 6-7, a simillar trend for the NMR results with the 4d1 system appears in a 3d1 system in a strong crystal field of octahedral symmetry. However, the NMR shifts in magnitude increase significantly in the 3d1 system in a strong crystal field environment of octahedral symmetry and along the $\langle 111 \rangle$ axis, the NMR shift changes sign for Rvalues larger than 0.25 nm. As shown in Table 7(c), the 1/R5 term gives the negative shift while the $1/R^7$ term gives the positive shift. The contribution of $1/R^7$ term to $\Delta B/B$ is bigger than that of $1/R^5$ term for R-values larger than 0.25 nm. From Table 7, we can find that for a 3d1 system in a strong crystal field of octahedral symmetry, there is good agreement between the nonmultipole and multipolar results for Rvalues larger than 0.4 nm. These are different from the NMR results for a 4d1 system. This calculation can be applied to investigate the NMR shift for 4dn system. However, no experimental value of $\Delta B/B$ has been reported for 4d¹ and 3d1 systems. ## References - (1) G. A. Webb, Ann. Rept. on NMR Spensroscopy, 6A, 1 - (2) A. F. Cockrill, G. L. O. Davies, R. C. Harden and D. M. Hackham, Chem. Revs., 73, 553 (1973). - (3) W. B. Lewis, J. A. Jackson and R. J. Taube, J. Chem. Phys., 36, 694 (1962). - (4) R. M. Golding, R. O. Pascual and S. Ahn, J. Magn. Res. 46, 406 (1982). - (5) C. C. Hinckley, J. Amer. Chem. Soc., 91, 5160 (1969): B Bleaney, C. M. Dobson, B. A. Levine, B. B. Martin, R. J. P. Williams and A. V. Xavier, Chem. Commur., 791 (1972). - (6) H. M. McConnell and R. E. mobertson., J. Chem. Phys., 29, 1361 (1958). - (7) R. J. Kurland and B. R. ReGravey, J. Magn. Res., 2, 286 - (8) B. Bleaney, J. Magn. Res., 8, 91 (1972). - (9) P. J. Stiles, Nol. Phys., 29, 1271 (1975). - (10) R. M. Golding and L. C. Stubbs, Proc. Roy. Soc., A354. 223 (1977). - (11) E. Clementi, D. L. Raimondi and W. P. Reinhart, J. Chem. Phys., 47, 1300 (1968). - (12) S. Ahn and H. C. Suh, Submitted to Bull. Korean Chem. Soc. for publication. - (13) L. C. Stubbs, Unpublished Thesis (PhD, The University of New South Wales, 1978).